Issue |
E3S Web Conf.
Volume 97, 2019
XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019)
|
|
---|---|---|
Article Number | 02030 | |
Number of page(s) | 7 | |
Section | Modern Building Materials | |
DOI | https://doi.org/10.1051/e3sconf/20199702030 | |
Published online | 29 May 2019 |
Structure formation and properties of thermochemically modified silicate-sodium compositions
Yuri Gagarin State Technical University of Saratov, Department “Building Materials and Technologies”, Polytechnic St., 77, Saratov, Russia
* Corresponding author: m-kochergina@list.ru
Modern methods allow to improve the functional properties of silicate-sodium compositions. Increased water resistance primarily will allow their use in construction. The article presents the results of the study of modified silicate-sodium compositions by X-ray phase analysis, differential thermal analysis, thermo-gravimetric analysis. An organic zinc-containing compound, zinc acetate dihydrate, which is introduced into the binder in the form of a concentrated aqueous fluid, was used as a modifier. Using X-ray analysis, it was shown that in the hardening system “silicate-sodium binder an aqueous fluid of zinc acetate” in the temperature range 110-450°C various forms of hydroxides, silicates and zinc silicates are formed. In addition, at T = 450°C, only “traces” of ZnO were detected, and the crystalline phase of the hardly soluble zinc metasilicate ZnSiO3 prevailed. The results of the study of modified samples by thermal analysis indicate the processes of thermal decomposition of the modifying additive in the binder system and indicate the possible formation of a new crystalline phase (ZnSiO3) at a temperature of 440-450°C. It was revealed that temperature treatment of modified samples in the range of 440-450°C leads to a more significant increase in water resistance (by 25-28%) than during low-temperature curing (by 20-23%).
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.