Issue |
E3S Web Conf.
Volume 263, 2021
XXIV International Scientific Conference “Construction the Formation of Living Environment” (FORM-2021)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 7 | |
Section | Modern Building Materials | |
DOI | https://doi.org/10.1051/e3sconf/202126301021 | |
Published online | 28 May 2021 |
Integrated modifying zinc-containing additive for construction silicate compositions
Yuri Gagarin State Technical University of Saratov, Department “Building Materials and Technologies”, Polytechnic St., 77, Saratov, Russia
* Corresponding author: m-kochergina@list.ru
Sodium silicate binders are a promising binder base for obtaining effective granular thermal insulation materials. Increasing water resistance, first of all, will expand the scope of their application in construction. At the same time, the features of the modification of sodium silicate binders by compounds of polyvalent metals have not been fully studied, the interaction with which leads to the formation of hardly soluble silicates. The purpose of this work was to develop a modifying complex based on a zinc-containing compound - zinc acetate to increase the water resistance and thermal characteristics of the porous granular material. The proposed modifying additive is a complex consisting of zinc acetate and an organic alcohol solvent. It is shown that the properties of porous granular material can be controlled by changing the composition of the zinc acetate solvent. Qualitative and quantitative dependences of the properties of porous granules (strength, water resistance, density, thermal conductivity) on the type of zinc-containing solution and its content in the compositions have been obtained. The concept of the mechanism of formation of sparingly soluble complexes during the modification of sodium silicate binders with zinc-containing aqueous-alcoholic solutions has been developed. X-ray phase analysis showed that the sodium silicate system modified with an aqueous alcohol solution of zinc acetate, in contrast to an aqueous solution of zinc acetate, is completely in an amorphous state. We believe that compounds of the Zn2SiO4H2O, ZnSiO3 type are in the amorphous state. The obtained research results made it possible to determine the rational composition of granular heat-insulating material with increased operational and functional characteristics (ρ = 200-280 kg / m3, λ = 0.052-0.063 W / (m °C), R = 1.3-1.8 MPa, Kr = 0.89-0.92, W = 16- 18 %).
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.