Issue |
E3S Web Conf.
Volume 98, 2019
16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference)
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 5 | |
Section | Geological Evolution of Water-Rock System: Mechanisms, Processes, Factors, Stages. The Session Dedicated to Stepan Shvartsev’s Memory | |
DOI | https://doi.org/10.1051/e3sconf/20199801024 | |
Published online | 07 June 2019 |
Geochemistry of strontium in fresh underground waters of the Sredneobskoy basin (Tomsk region, Russia)
Tomsk branch of the Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS, Tomsk, Akademichesky 4, 634055 Tomsk, Russia
* Corresponding author: IvanovaIS_1986@mail.ru
In the central part of Western Siberia a study of the chemical composition of fresh underground waters in the upper 600 m of the Sredneobskoy artesian basin was carried out. It was shown that underground waters generally contain high concentrations of strontium. The minimum concentrations of Sr are typical for Neogene-Quaternary sediments (600 µg/L), maximum values in the waters of the Upper Cretaceous sediments (more than 1300 µg/L). The study of strontium accumulation mechanisms in drinking underground waters is undoubtedly an important issue, as strontium is a biologically active element. Especially dangerous is the consumption of underground waters with a calcium-strontium ratio less than 100, that is the hydrogeochemical precondition for Urov endemic (Kashin-Beck disease). According to the calcium/strontium ratios data waters of the Neogene-Quaternary and Paleogene sediments selected in the south-western part of the Tomsk region are unsuitable for drinking water supply. Underground waters are shown to be in equilibrium with Al and Fe hydroxides; Ca, Mg, Fe carbonates; and clay minerals, including ferruginous. Increased strontium content in aquifers is determined not only by the chemical composition of the water-bearing rocks, but also increasing resident time of water rock interaction.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.