Issue |
E3S Web Conf.
Volume 98, 2019
16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference)
|
|
---|---|---|
Article Number | 05007 | |
Number of page(s) | 5 | |
Section | Modeling of Hydrogeochemical and Ore Formation Processes | |
DOI | https://doi.org/10.1051/e3sconf/20199805007 | |
Published online | 07 June 2019 |
X-ray absorption spectroscopy study of the chemistry of «invisible» Au in arsenian pyrites
1
Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetny per., 119017 Moscow, Russia
2
NRC “Kurchatov Institute”, Moscow, Russia
3
ESRF, 71, avenue des Martyrs CS 40220, 38043 Grenoble, France
4
Institute of Mineralogy, Urals Branch of RAS, Chelyabinsk District, 456317 Miass, Russia
* Corresponding author: o.filimonova@igem.ru
Arsenian pyrite is an abundant mineral occurring in many geological settings at the Earth’s surface, including hydrothermal ore deposits which are the main source of Au. So-called “invisible” (or refractory) form of Au is present in pyrites in all types of these deposits, and its concentration is often directly correlated with As content. Here we report results of the investigation of the local atomic structure of Au in natural (Cu-Au-porphyry) and synthetic (450°C/ 1 kbar, 300°C/ Psat) As-free and As-bearing pyrites by means of X-ray absorption spectroscopy (XAS). In addition, the state of As was determined in pyrite samples from Carlin-type deposit. XANES/EXAFS measurements, compiled with previously published data, revealed the chemical state (valence state, local atomic environment) of Au and As in arsenian pyrites. Au is present in the solid solution state (Au1+ in the Fe position, octahedrally coordinated by S atoms), as well as in Au1+2S clusters (Au1+ linearly coordinated by 2 S atoms). The admixture of As has no effect on the Au valence state and Au-S interatomic distance, except one synthetic sample containing a minor amount of FeAsS. Arsenic mostly incorporates into the anion site in pyrite lattice (S1-↔As1-). Our data demonstrate that pyrites of hydrothermal origin can host up to ~300 ppm of structurally bound “invisible” Au independently of As content.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.