Issue |
E3S Web Conf.
Volume 98, 2019
16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference)
|
|
---|---|---|
Article Number | 13001 | |
Number of page(s) | 7 | |
Section | Innovative Methods for Characterizing Metal and Nutrient Budgets in the Present and Past Terrestrial and Aquatic Environments. The Session Dedicated to Tom Bullen’s Memory | |
DOI | https://doi.org/10.1051/e3sconf/20199813001 | |
Published online | 07 June 2019 |
Anthropogenic N – A global issue examined at regional scale from soils, to fungi, roots and tree rings
1
Geological Survey of Canada, Lands & Minerals Sector, Natural Resources Canada, 490 de la Couronne, Québec (QC), G1K 9A9, Canada
2
Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec (QC), G1V 4C7, Canada
* Corresponding author: martinem.savard@canada.ca
Globally increasing anthropogenic airborne emissions of reactive nitrogen (N) generate several environmental issues that require investigating how N accumulation modifies the N cycle. Tree-ring δ15N series may help understanding past and current perturbations in the forest N cycle. Although several studies have addressed this issue, most of them were of local scale or based on short δ15N series. The development of this environmental indicator however would benefit from examining, at the regional scale, the relationships of long tree-ring series with soil N biogeochemical processes. Here we explore these links for tree stands of the oil-sands region in northern Alberta, and the coal-fired power plants region in central Alberta, Canada. We characterize the tree-ring δ15N trends, the N modification rates and bacterial and fungal communities of soil samples collected in the immediate surrounding of the characterized trees. The dataset suggests that specific soil pH, and N-cycling bacterial and fungal communities influence tree-ring δ15N responses to anthropogenic emissions, correlating either directly or inversely. Overall, tree-ring δ15N series may record changes in the forest-N cycle, but their interpretation requires understanding key soil biogeochemical processes. «In nature nothing exists alone», Rachel Carson.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.