Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 01056 | |
Number of page(s) | 6 | |
Section | Advanced HVAC&R&S Technology | |
DOI | https://doi.org/10.1051/e3sconf/201911101056 | |
Published online | 13 August 2019 |
Carbon-based Nanofluid Applications in Solar Thermal Energy
1 Izmir Katip Çelebi University, Graduate School of Natural and Applied Science, Çiğli, İzmir, Turkey
2 İzmir Katip Çelebi University, Department of Mechanical Engineering, Çiğli, İzmir, Turkey
3 Dokuz Eylül University, Department of Mechanical Engineering, Buca, İzmir, Turkey
* Corresponding author: alpaslan.turgut@deu.edu.tr
Renewable energy sources such as solar, wind and geothermal are proposed as an alternative to fossil fuels whose excessive use causes global warming. The most popular one of the renewable energy sources is considered as solar energy due to the fact that required energy is provided by the sun entire year around the world. Solar energy systems convert the solar radiation to the useful heat or electricity. In order to achieve better performance in solar thermal systems many studies have been conducted. Some of these studies suggest that heat transfer fluid could be changed with the nanofluids which can be defined as new generation heat transfer fluid. Nanofluids are suspensions of nano-sized particles such as metals, metal-oxides, and Carbon-allotropes (C), in the conventional base-fluids (water, ethylene glycol and oil). Using nanofluid enhances the efficiency and thermal performance of solar systems due to their better thermophysical and optical properties. Recently, C-based nanofluids are getting attention due to their enhanced thermal conductivity and absorptivity at even low concentrations. The results show that C-based nanofluids have a potential to use in solar energy systems: solar collectors, solar stills, photovoltaic/thermal systems.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.