Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 01080 | |
Number of page(s) | 6 | |
Section | Advanced HVAC&R&S Technology | |
DOI | https://doi.org/10.1051/e3sconf/201911101080 | |
Published online | 13 August 2019 |
Thermally Activated Concrete Slabs with Integrated PCM Materials
1 Institute of Heat, Gas and Water Technology, Riga Technical University, Kalku street 1, Riga, LV-1658, Latvia
2 Institute of Materials and Structures, Riga Technical University, Kalku street 1, Riga, LV-1658, Latvia
* Corresponding author: renars.millers@gmail.com
As building codes are pushing towards higher energy efficiency and the arrival of nearly Zero Energy Building (nZEB) requirements for all new buildings are just around the corner the need for alternative, high efficiency heating and cooling solutions for nZEB’s is greater than ever. Also as experience with renewable energy sources has proven the energy demand and energy generation rarely overlaps and it does not allow to fully utilise some renewable energy sources. This is a simulation study that focuses on integrated cooling and energy storage system utilising phase-change materials (PCM). Several types of thermally activated slabs with different PCM thicknesses were simulated in order to find the most optimal PCM thickness with melting point temperature that can support passive cooling methods based on adiabatic cooling principles. Two calculation tools were used for the study – IDA ICE 4.8 and U-NORM 2012-2 to calculate the properties of the slabs and potential of application in well insulated residential building in Baltic climate. The results showed that the optimal thickness for thermally activated PCM layer (large flat containers) range from 25 mm to 90 mm, and for layers with no thermal activation – 180 mm and more. Moreover the results show that apart from energy storage the thermally activated panel can increase thermal comfort conditions.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.