Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 02037 | |
Number of page(s) | 6 | |
Section | Indoor Environment Quality and Others | |
DOI | https://doi.org/10.1051/e3sconf/201911102037 | |
Published online | 13 August 2019 |
Effect of Zero Air Change Rate On Particle Dispersion in A Room with Floor Heating
Uludag University, Vocational School of Yenisehir Ibrahim Orhan, 16900, Bursa, Turkey
* Corresponding author: mustafamutlu@uludag.edu.tr
Dispersion of airborne particles in the office and residential areas should be well known as these particles in an enclosed volume has a significant effect on human health. In this study, the effect of the floor heating system, which is often preferred by end users due to the energy efficiency of low heating systems, on particle distribution in a room was investigated numerically. It is essential to examine the floor heating having a significant place among low heating systems, concerning particle dispersion. In enclose volumes, ambient air should be replaced with fresh air that is supplied from outdoor in order to ensure indoor air quality. However, the ideal air change rates may not be met for daily use, even in some cases air change rates might be zero. Therefore, in this study absence of air change were assumed, and after temperature and velocity distributions were determined, five different sized particles were tracked by using Eulerian-Lagrangian model. Additionally, three heating capacities (35 W/m2 41.25 W/m2 and 47 W/m2) of the floor heating system were investigated. In this study, where computational fluid dynamics were used, the effect of drag, lift, thermophoretic and Brownian forces were considered. It was found that particles were settled on walls and ceiling due to zero air change rate, and particle concentration rises in the lower part of the wall as particle diameter increases.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.