Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 6 | |
Section | High Energy Performance and Sustainable Buildings | |
DOI | https://doi.org/10.1051/e3sconf/201911103002 | |
Published online | 13 August 2019 |
Optimization of emission reducing energy retrofits in Finnish apartment buildings
1 Aalto University, Department of Mechanical Engineering, PO Box 14400, 00076, Aalto, Finland
2 Tampere University of Technoloy, Department of Civil Engineering, PO Box 527, 33101, Tampere, Finland
* Corresponding author: janne.p.hirvonen@aalto.fi
This study examined the cost-optimality of energy renovation on Finnish apartment buildings of different ages, built according to different energy performance requirements. Multi-objective optimization was utilized to minimize both CO2 emissions and life cycle cost (LCC). IDA-ICE simulations were performed to obtain the hourly heating demand of the buildings. Four building age classes and three heating systems (district heating, exhaust air heat pump and ground-source heat pump) were separately optimized. With district heating, it was possible to reduce emissions by 11%, while also reducing LCC. With heat pumps cost-savings could be achieved while reducing emissions by over 49%. With maximal (not cost-effective) investments, emissions could be reduced by more than 70% in all examined cases. In all cases, the cheapest solutions included solar electricity and sewage heat recovery. In old buildings, window upgrades and additional roof insulation were cost-effective. In new buildings, demand-based ventilation was included in all optimal solutions.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.