Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 03025 | |
Number of page(s) | 8 | |
Section | High Energy Performance and Sustainable Buildings | |
DOI | https://doi.org/10.1051/e3sconf/201911103025 | |
Published online | 13 August 2019 |
A framework for the technical evaluation of residential buildings’ energy retrofit
Eurac Research, Institute for Renewable Energy, 39100, Bolzano, Italy
* Corresponding author: annamaria.belleri@eurac.edu
Despite a wide range of energy-efficient technologies, financial products and public incentives are already available, the private as well as the public sector are struggling to invest in energy efficient solutions for buildings. The primary barriers are the high initial cost and the uncertain payback period of the energy refurbishment. Allowing for different scenario testing and considering interactions among different building energy systems, building energy simulation tools can help investors overcoming such barriers by offering support to the technical planning of energy refurbishment kits through quantitative information rather than qualitative. The energy performance and comfort of three reference multifamily residential buildings typologies were evaluated considering three envelope retrofitting performance levels (high-medium-low insulated and airtight) and different heating and domestic hot water systems (heat pump, boiler, district heating). The tested envelope retrofitting performance levels allow for heating need reduction between 50% and 90% compared to the reference case. The active cooling system is not accounted for and building energy simulations outputs include thermal comfort evaluation and overheating risk assessment during the summer season. The potential of photovoltaic system combined with heat pump is evaluated in the three reference cases leading to up to 30% of load coverage.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.