Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 03039 | |
Number of page(s) | 8 | |
Section | High Energy Performance and Sustainable Buildings | |
DOI | https://doi.org/10.1051/e3sconf/201911103039 | |
Published online | 13 August 2019 |
Techno-economic and environmental performances of heating systems for single-family code-compliant and passive houses
Department of Building Technology, Linnaeus University, Växjö, Sweden
* Corresponding author: ambrose.dodoo@lnu.se
In this study the implications of different energy efficiency requirements and heating solutions for versions of a single-family house in southern Sweden is explored. Final energy use, primary energy use, climate impacts and lifecycle cost of heat supply are analyzed for the building versions designed to meet the current Swedish BBR 2015 building code and heated with district heating or exhaust air heat pump. A case where the building is designed to the Swedish passive house criteria and heated with exhaust air heat pump is also analyzed. The district heating is assumed to be supplied from combined heat and power plants using bio-based fuels. For the heat pump solutions, cases are analyzed where the electricity supply is from coal-fired condensing power plant or fossil gas combined cycle power plant as baseline scenario, and from a combination of improved fossil power plants and non-fossil power plants as long-term scenario. The analysis considers the entire energy chain from natural resources to the final energy services. The results show that the BBR heat pump heated building use the most primary energy compared to the other two alternatives. Lifecycle cost is reduced by about 7-12% when district heating is used instead of heat pump for a BBR code-compliant building. This study shows the importance of lifecycle and system-wide perspectives in analyzing the resource efficiency and climate impacts as well as economic viabilities of heating solutions for houses.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.