Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 04046 | |
Number of page(s) | 7 | |
Section | High Energy Performance and Sustainable Buildings, Simulation models and predictive tools for the buildings HVAC, IEQ and energy | |
DOI | https://doi.org/10.1051/e3sconf/201911104046 | |
Published online | 13 August 2019 |
Photocatalytic techniques to prevent and combat healthcare associated infections
1 Faculty of Biology – Department of Botany and Microbiology, University of Bucharest
2 Faculty of Chemistry, University of Bucharest
3 Faculty of Building Services Engineering, Technical University of Civil Engineering, Bucharest
4 Research Institute of University of Bucharest, România
5 Romanian National Lighting Committee
* Adrese coresponden.a autori: mihai.husch@gmail.com; bucuresteanu.rc@gmail.com
An ever-increasing rate of morbidity and mortality caused by healthcare associated infections is reported annually. Air circulation mediates contact with microbial contaminated aerosols and represents a major risk of transmitting healthcare associated infections. We propose a revolutionary technique for the protection of interior surfaces based on a photocatalytic composition with doped TiO2 or ZnO type semiconductor metal oxides which exert antimicrobial effect. In principle, there is an activation of the photocatalytic coating with light from the normal lighting apparatus, which may incorporate one or more sources of photocatalytic excitation light. By studying the air circulation in the hospital, it is possible to design light fixtures with specific design of light distribution, in order to perform the disinfection of the air and surfaces and to amplify the antimicrobial effect. The disinfection process does not affect patients or healthcare professionals, it can be done in their presence and has a continuous, controllable effect. Photocatalytic paint in combination with a prototype luminaire with a precise spectrum light sources, light output and a light intensity distribution curve relative to the shape and dimensions of the rooms, shows that the proposed method may represent a successful alternative to classical methods of disinfection in hospitals. This technique can also be used in other areas of interest.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.