Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 04053 | |
Number of page(s) | 8 | |
Section | High Energy Performance and Sustainable Buildings, Simulation models and predictive tools for the buildings HVAC, IEQ and energy | |
DOI | https://doi.org/10.1051/e3sconf/201911104053 | |
Published online | 13 August 2019 |
Optimizing production efficiencies of hot water units using building energy simulations - Trade-off between Legionella pneumophila contamination risk and energy efficiency
Research group of Building Physics, Ghent University, Ghent, Belgium
* Corresponding author: Elisa.VanKenhove@UGent.be
The energy needed for domestic hot water represents an important share in the total energy use of well-insulated and airtight buildings. One of the main reasons for this high energy demand is that hot water is produced at temperatures above 60°C to mitigate the risk of contaminating the hot water system with Legionella pneumophila. However, this elevated temperature is not necessary for most domestic hot water applications, and has a negative effect on the efficiency of hot water production units. A simulation model has been developed which proposes an alternative to this constant 60°C by predicting the Legionella pneumophila concentration dynamically throughout the hot water system. Based on this knowledge, a hot water controller is added to the simulation model that sets a lower hot water comfort temperature in combination with heat shocks. In this paper, the simulation model is used to estimate the energy saving potential in a case study building, at the level of the heat production system by reaching higher production efficiencies. Three different production units, namely an electric boiler, heat pump and solar collector have been investigated. The controller is expected to become an alternative for the current, energy intensive, high temperature tap water heating systems.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.