Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 05010 | |
Number of page(s) | 8 | |
Section | Information and Communication Technologies (ICT) for the Intelligent Building Management | |
DOI | https://doi.org/10.1051/e3sconf/201911105010 | |
Published online | 13 August 2019 |
Fault detection in HVAC systems using a distribution considering uncertainties
1 The University of Tokyo, School of Engineering Department of Architecture, 1138654, Hongo Bunkyo Tokyo, Japan
2 MTD Co., Ltd., 1400013, Minamiooi Shibuya Tokyo, Japan
* Corresponding author: shhmyt@gmail.com
Detecting and diagnosing faults that degrade the performance of heating, ventilation, and air conditioning (HVAC) systems is very important for maintaining high energy efficiency. The performance of HVAC systems can be evaluated by analyzing monitored data. However, data from a HVAC system generally includes uncertainties, which renders monitored data less reliable. Then, we focused on uncertainties and a calculated performance distribution. The uncertainties from sensors, actuators, and communications were modelled stochastically and were incorporated into a detailed simulation. The system coefficient of performance (SCOP) was used as a performance indicator, which is defined as the ratio of suppled heat to total power consumption. The SCOP distributions over the course of representative weeks in 2007 and 2015 were calculated by repeating the simulation 2,000 times with different uncertainties. Regarding the results for 2015, the 90% confidence interval of the distribution was -4.9% to 5.8% from the SCOP value without uncertainties. The SCOP value determined from the monitored data in 2015 was outside of the low end of the distribution though that in 2007 was inside of the interval. Through an analysis of the monitored data, it was found that fault detection is possible by comparing the monitored data with the distribution.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.