Issue |
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
|
|
---|---|---|
Article Number | 10003 | |
Number of page(s) | 5 | |
Section | New Concepts | |
DOI | https://doi.org/10.1051/e3sconf/202123810003 | |
Published online | 16 February 2021 |
Model-Based Diagnosis of Telecommunication Cooling Systems Malfunctioning
1
Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, Fisciano (SA) 84084, Italy
2
TIM, Procurement/Energy Management Planning, Engineering and Deployment, Bologna 40138, Italy
* Corresponding author: msorrentino@unisa.it
A model is developed that allows simulating the most-likely failures possibly occurring in freecooling (FC) systems of telecommunication (TLC) switching rooms. Main aim is to provide an effective and online implementable diagnosis method, which in turn will allow fulfilling the threefold function of safeguarding electronic equipment, ensuring desired air quality in case of human presence and reducing malfunction-related waste of energy. Specifically in this work, obstruction (reduction of the volumetric flow of air introduced into the room) and loss of efficiency (degradation of the fan) are deepened. Two black-box sub-models were developed to simulate the above described faulty functioning of the free-coolers. Subsequently, the fault signature matrix was developed, through which the “symptoms”, calculated as residuals between the “faulty” and “non faulty” conditions of the monitored variables, are associated to the corresponding faults. The peculiarity of the telecommunication sector, where nowadays data acquisition and monitoring platforms are significantly spreading to monitor most significant energy consumptions, including cooling loads, was proved essential in guaranteeing effective isolation of different faults. The simulation results highlight the reliability of the developed diagnostic tool, expected to be versatile and easy to implement enough for being extended to air-handling unit diagnosis, as well as other industrial sectors.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.