Issue |
E3S Web Conf.
Volume 113, 2019
SUPEHR19 SUstainable PolyEnergy generation and HaRvesting Volume 1
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 7 | |
Section | Sustainable Power Plants | |
DOI | https://doi.org/10.1051/e3sconf/201911301013 | |
Published online | 21 August 2019 |
Thermodynamic and economic analysis of a plant for the CO2 hydrogenation for methanol production
1
Thermochemical Power Group, University of Genoa, Via Montallegro 1, 16145 Genova, Italy
2
University of Duisburg-Essen, Leimkugelstraße 10, 45141 Essen, Germany
* Corresponding author: daria.bellotti@edu.unige.it
A major goal of politics, society, and industry is the reduction of carbon dioxide (CO2) emissions in order to prevent anthropogenic climate change and an increase in earth’s temperature. In addition, the expansion of renewable energies and the use of nuclear power, CO2 capturing (e.g. from exhaust gases), is regarded as a promising strategy to reduce global CO2 emissions. In this context, the Power-to-X technologies can provide an innovative energy storage concept by combining the main trends of energy systems aiming at high shares of renewable energies, reduction of CO2 emissions and sector coupling. A promising approach is the production of methanol as a chemical raw material or fuel. The goal of this paper is to present (i) an extensive thermodynamic analysis for the methanol production from carbon dioxide and hydrogen and (ii) an economic analysis for the process based on the thermodynamic studies. The thermodynamic analysis was carried out in the simulation tool Aspen Plus™ in order to investigate the impact of the operating temperature and pressure on the performance of the synthesis unit. Based on the thermodynamic results, an economic analysis has been performed in order to define the most feasible solution. For a defined optimal operating temperature, the fixed and operating costs and the methanol production cost were evaluated for different operating pressures. Finally, a sensitivity analysis has been performed in order to define the minimum methanol selling price that allows for a payback period of 10 years for different values of the electrical energy purchasing price.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.