Issue |
E3S Web Conf.
Volume 116, 2019
International Conference on Advances in Energy Systems and Environmental Engineering (ASEE19)
|
|
---|---|---|
Article Number | 00057 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/201911600057 | |
Published online | 24 September 2019 |
Comparing water and paraffin PCM as storage mediums for thermal energy storage applications
National and Kapodistrian University of Athens, General Department, Energy and Environmental Research Laboratory, 34400, Psachna, Campus, Evia, Greece
* Corresponding author: mgrvrachop@uoa.gr
A CFD analysis is performed in two different heat storage mediums, water and paraffin phase change material (PCM), in order to evaluate and compare the two mediums for use in heating thermal energy storage (HTES) applications. The two mediums use different heat storing mechanisms, namely water uses Sensible Heat Storage, and the PCM Latent heat storage. The applied computational domain represents a single tube of a heat exchanger (HE), and so it comprises of a copper tube with aluminium fins. The geometric characteristics of the domain are taken in accordance with commercially used HE’s for HTES applications [1]. The characteristics studied are the stored energy of the system, the temperature of the heat transfer fluid (HTF) in the outlet and the temperature of the storage medium. The results of the simulations showed that for the same mass of storage mediums, the PCM can store more energy than water, for the same temperature of the HTF, as expected. Also, the temperature of the medium for the sensible heat storage rises linearly with the energy stored inside it, while in the latent heat storage mechanism, the temperature of the medium rises linearly till the melting (or solidification) of it, then stays almost steady until the melting of the whole volume and then rises again until it reaches the temperature of the HTF.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.