Issue |
E3S Web Conf.
Volume 116, 2019
International Conference on Advances in Energy Systems and Environmental Engineering (ASEE19)
|
|
---|---|---|
Article Number | 00104 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/201911600104 | |
Published online | 24 September 2019 |
Biogas production in the methane fermentation of excess sludge oxidized with Fenton’s reagent
Czestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Brzeznicka 60a, 42-200 Czestochowa, Poland
* Corresponding author: izawieja@is.pcz.czest.pl
The advanced oxidation processes (AOPs) play an important role in the degradation of hardly decomposable organic pollutants. AOPs methods rely on the production of highly reactive hydroxyl OH• radicals. The aim of the conducted research was to intensify biogas production in the methane fermentation process of excess sludge subjected to the process of deep oxidation with Fenton's reagent. In the process of oxidation of sewage sludge with the Fenton reagent, doses of iron ions in the range 0.02–0.14 g Fe2+/g TS (total solids) were used Hydrogen peroxide was measured in the proportions 1: 1–1:10 in relation to the mass of iron ions. The basic substrate of the study was excess sludge. In the case of excess sludge oxidation with the use of Fenton's reagent, the most favorable process conditions were considered to be the dose of iron ions 0.08 g Fe2+/g d.m. and a Fe2+: H2O2 ratio of 1:5. As a result of subjecting the excess sludge to disintegration with the Fenton reagent in the above-mentioned dose, with respect to the fermentation process of unprocessed sludge, about two-fold increase in the digestion degree of excess sludge and about 35% increase of the biogas yield was obtained.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.