Issue |
E3S Web Conf.
Volume 125, 2019
The 4th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2019)
|
|
---|---|---|
Article Number | 14009 | |
Number of page(s) | 7 | |
Section | Renewable Energy | |
DOI | https://doi.org/10.1051/e3sconf/201912514009 | |
Published online | 28 October 2019 |
Plasma gasification modeling of municipal solid waste from Jatibarang Landfill in Semarang, Indonesia: analyzing its performance parameters for energy potential
1 Master Program of Energy, School of Postgraduate Studies, Diponegoro University, Semarang - Indonesia
2 Department of Physics, Faculty of Science and Math, Diponegoro University, Semarang – Indonesia
* Corresponding author: psesotyo@gmail.com
The plasma gasification offers more benefits compared to the conventional gasification. Those benefits include the better environmental issue such as lower emission, variated feedstock and higher energy recovery, including hydrogen and waste heat. Waste to energy technology is developed as a means of waste management to obtain new and renewable energy, due to the increasingly amount of waste produced by the growing population. The feedstock use is municipal solid waste (MSW) from TPA Jatibarang in Semarang City, Central Java. Along with population growth, energy supply becoming a very crucial issue in the near future. Converting the waste to energy would overcome the two crucial issues at once. With high temperature, the plasma gas decompose the feedstock into its constituent element and within thermochemical equilibrium stoichiometry, the syngas was formed. This model was developed based on plasma arc technology and able to estimate the syngas composition, energy required for the reaction and also the CO2 emission. This study is to obtain the crucial parameter which was involved to get the highest of hydrogen, highest syngas yield, highest efficiencies along with lowest its emission. Results shows that, the use of 100% steam as gasifying agent and steam to waste ratio (SWR) of 34,48%, can produce 48,33% of H2, Syngas Yield is 9,26 Nm3/kg, Cold Gasification Efficiency is 58.60% and its emission is 0.864 kg/hr.
Key words: Plasma Gasification / Municipal Solid Waste / Syngas Composition / Syngas Yields / CO2 Emission
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.