Open Access
Issue
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 01014
Number of page(s) 6
Section Heat and Mass Transfer in Energy Systems
DOI https://doi.org/10.1051/e3sconf/201912801014
Published online 08 November 2019
  1. A.C. Benim, M. Geiger, S. Doehler, M. Schoenenberger, H. Roemer, “Modelling the flow in the exhaust hood of steam turbines under consideration of turbine-exhaust hood interaction” , in: Proceed. 1st European Conferece on Turbomachinery - Fluid Dynamic and Thermodynamic Aspects: Computational Methods, Erlangen, Germany, March 1-3, 1995, Book Series: VDI Berichte, Vol. 1185, pp.343–357 (VDI Verlag, Duesseldorf, 1995) [Google Scholar]
  2. E. Bellos, I. Danill, C. Tzivanidis, “A cylindrical insert for parabolic trough solar collector”, International Journal of Numerical Methods for Heat & Fluid Flow, 29(5), pp.1846–2876 (2019) [CrossRef] [Google Scholar]
  3. D.G. Ebling, A. Krumm, B. Pfeiffelmann, J. Gottschald, J. Bruchmann, A.C. Benim, M. Adam, R. Labs, R.R. Herbertz, A. Stunz, “Development of a system for thermoelectric heat recovery from stationary industrial processes”, Journal of Electronic Materials, 45(7), pp. 3433–3439 (2016) [CrossRef] [Google Scholar]
  4. S. Cordiner, A. Manni, V. Mulone, V. Rocco, “Biomass furnace study via 2D numerical modeling”, International J. Numerical Methods for Heat & Fluid Flow, 26(2), pp. 515–533 (2016) [CrossRef] [Google Scholar]
  5. J.P. Kim, U. Schnell, G. Scheffknecht, A.C. Benim, “Numerical modelling of MILD combustion for coal”, Progress in Computational Fluid Dynamics - An International Journal, 7(6), pp.337–346 (2007). [CrossRef] [Google Scholar]
  6. S. Cordiner, A. Manni, V. Mulone, V. Rocco, “Biomass pyrolysis modeling of systems at laboratory scale with experimental validation”, International Journal of Numerical Methods for Heat & Fluid Flow, 28(2), pp. 413–438 (2018) [CrossRef] [Google Scholar]
  7. R. S. El-Emam, I. Khamis, “Advances in nuclear hydrogen production: Results from an IAEA international collaborative research project”, International Journal of Hydrogen Energy, 10.1016/j.ijhydene.2018.04.012 (2018) [Google Scholar]
  8. A.C. Benim, K.J. Syed, Flashback Mechanisms in Lean Premixed Gas Turbine Combustion, (Academic Press, Cambridge, 2014). [Google Scholar]
  9. S.R. Turns, An Introduction to Combustion, 3rd Ed. (McGrawHill, New York, 2012) [Google Scholar]
  10. C. J. Lawn, “Lifted flames on fuel jets in co-flowing air”, Progress in Energy and Combustion Science, 35, pp. 1–30 (2009) [Google Scholar]
  11. P.A. Libby, F.A. Williams, Turbulent Reacting Flows (Academic Press, London, 1994) [Google Scholar]
  12. P. Sagaut, Large Eddy Simulation for Incompressible Flows, 3rd Ed., (Springer, Berlin, 2006) [Google Scholar]
  13. A.C. Benim, M.P. Escudier, A. Nahavandi, A.K. Nickson, K.J. Syed, F. Joos, “Experimental and numerical investigation of isothermal flow in an idealized swirl combustor”, International Journal of Numerical Methods for Heat & Fluid Flow, 20(3), pp.348–370 (2010) [CrossRef] [Google Scholar]
  14. A.C. Benim, S. Iqbal. W. Meier, F. Joos, A. Wiedermann, “Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor”, Applied Thermal Engineering, 110, pp.202–212 (2017) [Google Scholar]
  15. P.A. Durbin, B.A. P. Reif, Statistical Theory and Modelling for Turbulent Flows, 2nd Ed. (Wiley, Chichester, 2011) [Google Scholar]
  16. R.W. Schefer, M. Namazian, J. Kelly, “Stabilization of lifted turbulent-jet flames”, Combustion and Flame, 99, pp.75–86 (1994). [Google Scholar]
  17. R. Cabra, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R. S. Barlow, “Lifted methane-air jet flames in a vitiated coflow”, Combustion and Flame, 143, pp.491–506 (2005). [Google Scholar]
  18. S.B. Pope, “Computations of turbulent combustion: Progress and challenges”, Proceedings of the Combustion Institute, 23, pp. 591–612 (1991) [CrossRef] [Google Scholar]
  19. M. Gonzalez, R.A. Borghi, “A Lagrangian intermittent model for turbulent combustion theoretical basis and comparisons with experiments”, in: Durst, F., Launder B.E., Reynolds, W.C., Schmidt, F.W. and Whitelaw, J.H. (Eds.) Turbulent Shear Flows 7 (Springer, Berlin, 1991) [Google Scholar]
  20. H. Pitsch, M. Ihme, “An unsteady flamelet/progress variable method for LES of nonpremixed turbulent combustion”, AIAA Paper 2005-557 (2005) [Google Scholar]
  21. A.Y. Klimenko, R.W. Bilger, “Conditional moment closure for turbulent combustion”, Progress in Energy and Combustion Science, 25, pp.595–687 (1999) [Google Scholar]
  22. S. De, A. De, A. Jaiswal, A. Dash, “Stabilization of lifted hydrogen jet diffusion flame in a vitiated coflow: Effects of jet and coflow velocities, coflow temperature and mixing”, International Journal of Hydrogen Energy, 4(33), pp.15026–15042 (2016) [Google Scholar]
  23. I.R. Gran, B.F. Magnussen, “ A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry”, Combustion Science and Technology, 119, pp.191–217 (1996) [CrossRef] [Google Scholar]
  24. R. Cabra, T. Myhrvold, J.Y. Chen, R.W. Dibble, A. N. Karpetis, R. S. Barlow, “Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modelling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow”, Proceedings of the Combustion Institute, 29, pp. 1881–1888 (2002). [CrossRef] [Google Scholar]
  25. Z. Wu, S.H. Starner, R.W. Bilger, “Lift-off heights of turbulent H2/N2 jet flames in a vitiated coflow”, Proc. 2003 Australian Symp. on Combustion and the 8th Australian Flame Days, Monash University, Melbourne Australia, 8,9 December, 2003. [Google Scholar]
  26. J.C. Sautet, D. Stepowski, “Dynamic behavior of variable density, turbulent jets in their near development field”, Physics of Fluids, 7(11) pp.2796–2806 (1995). [CrossRef] [Google Scholar]
  27. ANSYS® FLUENT 18.0, http://www.ansys.com [Google Scholar]
  28. R.M.C. So, H. Aksoy, “On vertical turbulent buoyant jets”, International Journal of Heat and Mass Transfer, 36(13), pp.3187–3200 (1993). [Google Scholar]
  29. A.C. Benim, “A finite element solution of radiative heat transfer in participating media utilizing the moment method”, Computer Methods in Applied Mechanics and Engineering, 67(1), pp.1–14 (1988) [Google Scholar]
  30. R.J. Kee, F.M. Rupley, J.A. Miller, “The Chemkin Thermodynamic Data Base”, Sandia Report, SAND87-8215B (1991) [Google Scholar]
  31. F.R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32 (1994) [NASA ADS] [CrossRef] [Google Scholar]
  32. B.E. Launder, D.B. Spalding, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, 3, pp.269–289 (1972) [Google Scholar]
  33. V Yakhot, S.A. Orszag, “Renormalization group analysis of turbulence”, Journal of Scientific Computing, 1(1), pp.3–51 (1986) [Google Scholar]
  34. TJ. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, 1995. “A new k-ɛ model for high Reynolds number turbulent flows - Model development and validation”, Computers and Fluids, 24(3), pp-227–238 (1995) [CrossRef] [Google Scholar]
  35. H. Chattopadhyay, A.C. Benim, “Turbulent heat transfer over a moving surface due to impinging slot jets”, Journal of Heat Transfer - Transactions of the ASME, 133(10), Article Nr.: 104502, 5 pages, doi: 10.1115/1.4004075 (2011) [CrossRef] [Google Scholar]
  36. S. Kudriakov, E. Studer, C. Bin, “Numerical simulation of the laminar hydrogen flame in the presence of a quenching mesh”, International Journal of Hydrogen Energy, 36, pp.2555–2559 (2011) [Google Scholar]
  37. N.M. Marinov, C.K. Westbrook, W.J. Pitz, “Detailed and Global Chemical Kinetics Model for Hydrogen” Report UCRL-JC-120677, Lawrence Livermore National Laboratory, California (1995) [Google Scholar]
  38. http://combustion.berkeley.edu/gri-mech/ [Google Scholar]
  39. J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion”, International Journal of Chemical Kinetics, 36, pp. 566–575 (2004) [Google Scholar]
  40. M.O. Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, C. K. Westbrook, “A comprehensive modeling study of hydrogen oxidation, International Journal of Chemical Kinetics, 36, pp.603–622 (2004) [Google Scholar]
  41. A. Keromnes, W.K. Metcalfe, K.A. Heufer, N. Donohoe, A.K. Das, C.J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, M.C. Krejci, E.L. Petersen, W.J. Pitz, J.J. Curran, “An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures”, Combustion and Flame, 160(6), pp.995–1011 (2013) [Google Scholar]
  42. B.F. Magnussen, B.H. Hjertager, “On mathe-matical models of turbulent combustion with special emphasis on soot formation and combustion”, Proc. 16th Symp. (Int.) Combustion (The Combustion Institute, Pittsburgh, PA, 1976 ) pp.719–729 [Google Scholar]
  43. I.R. Gran, B.F. Magnussen, ”A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence if combustion modeling and finite-rate chemistry”, Combustion Science and Technology, 119, pp.191–217 (1996) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.