Issue |
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 4 | |
Section | Biomedical Engineering | |
DOI | https://doi.org/10.1051/e3sconf/201912802001 | |
Published online | 08 November 2019 |
A new simulation method for laser speckle imaging to investigate hemodynamics
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University,
Xi’an, Shaanxi,
710049,
China
* Corresponding author: chenbin@xjtu.edu.cn
Speckle simulation is a powerful protocol to investigate the properties of speckle and evaluate image processing method. However, only static speckle images can be simulated by available methods without considering time-integrated effect of CCD. A time–integrated dynamic speckle simulation method basedon coherent imaging was developed. Through the new simulation method, the effect of speckle size on LSCI was investigated. The smaller the speckle size is, the higher the spatial resolution become.But the one-dimensional speckle size should exceed two pixels to sample the speckle pattern. The characteristics of existing speckle contrast imaging methods were studied based on spatial statistics, and optimal parameters are given to obtain accurate and less noisy image. In general, the new simulation method for laser speckle imaging is a powerful tool to monitor blood flow in vivo and lay a solid foundation for the study of hemodynamics.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.