Open Access
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 02001
Number of page(s) 4
Section Biomedical Engineering
Published online 08 November 2019
  1. Faurschou A., Olesen A.B., Leonardi-Bee J.,and Haedersdal M., Lasers or Light Sources for Treating Port-wine Stains, COCHRANE.DB.SYST.REV. (2011). [Google Scholar]
  2. Passeron T., Maza A., Fontas E., Toubel G., Vabres P., Livideanu C., Mazer J.M., Rossi B., Boukari F.,and Harmelin, Treatment of Port Wine Stains with Pulsed Dye Laser and Topical Timolol:A Multicenter Randomized Controlled Trial, BRIT.J.DERMATOL. 170,6, PP.1350–1353, (2014). [CrossRef] [Google Scholar]
  3. McCLEAN K.,and Hanke, The Medical Necessity for Treatment of Port-Wine Stains, DERMATOL.SURG. 23,8, pp.663–667, (1997). [Google Scholar]
  4. Bencini P.L., Cazzaniga S., Galimberti M.G., Zane C.,and Naldi, Variables Affecting Clinical Response to Treatment of Facial Port-Wine Stains by Flash Lamp-Pumped Pulsed Dye Laser:The Importance of Looking Beyond the Skin, LASER.MED.SCI. 29,4, pp.1365–1370, (2014). [CrossRef] [Google Scholar]
  5. Alster T.S.,and Wilson, Treatment of Port-Wine Stains with the Flashlamp-Pumped Pulsed Dye Laser:Extended Clinical Experience in Children and Adults, ANN.PLAS.SURG. 32, pp.478–478, (1994). [CrossRef] [Google Scholar]
  6. Rox Anderson R., Parrish,and Medicine,Microvasculature Can Be Selectively Damaged Using Dye Lasers:A Basic Theory and Experimental Evidence in Human Skin, LASER.SURG.MED. 1,3, pp.263–276, (1981). [CrossRef] [Google Scholar]
  7. Duncan D.D.,and Kirkpatrick, The Copula:A Tool for Simulating Speckle Dynamics, JOSA.A. 25,1, pp.231–237, (2008). [CrossRef] [Google Scholar]
  8. Qiu J., Li P., Luo W., Wang J., Zhang H.,and Luo, Spatiotemporal Laser Speckle Contrast Analysis for Blood Flow Imaging with Maximized Speckle Contrast, J.BIOMED.OPT. 15,1, pp.016003. (2010). [CrossRef] [Google Scholar]
  9. Song L., Zhou Z., Wang X., Zhao X.,and Elson, Simulation of Speckle Patterns with Pre-Defined Correlation Distributions, BIOMED.OPT.EXPRESS. 7,3, pp.798–809, (2016). [CrossRef] [Google Scholar]
  10. Kirkpatrick S.J., Duncan D.D.,and Wells-Gray, Detrimental Effects of Speckle-Pixel Size Matching in Laser Speckle Contrast Imaging, OPT.LETT. 33,24, pp.2886–2888, (2008). [CrossRef] [Google Scholar]
  11. Rajan V., Varghese B., van Leeuwen T.G.,and Steenbergen, Speckle Size and Decorrelation Time; Space-Time Correlation Analysis. OPT.COMMUN. 281, 6 (2008) [CrossRef] [Google Scholar]
  12. Duncan D.D.,and Kirkpatrick, Can Laser Speckle Flowmetry Be Made a Quantitative Tool?, JOSA.A. 25,8, pp.2088–2094, (2008). [CrossRef] [Google Scholar]
  13. Zakharov P., Völker A., Buck A., Weber B.,and Scheffold, Quantitative Modeling of Laser Speckle Imaging, OPT.LETT. 31,23, pp.3465–3467, (2006). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.