Issue |
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
|
|
---|---|---|
Article Number | 03004 | |
Number of page(s) | 5 | |
Section | Heat and Mass Transfer in Nuclear Applications | |
DOI | https://doi.org/10.1051/e3sconf/201912803004 | |
Published online | 08 November 2019 |
Effect of inserted sphere size on heat transfer characteristics of FCC structured pebble bed in a HTGR
1
ECollege of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology,
Xi’an,
710021,
China
2
Department of Mechanical & Control Engineering, Handong Global University,
Pohang,
37554,
South Korea
* Corresponding author: lsheng.ch@sust.edu.cn
Hot spots appearing in an operating high temperature gas-cooled reactor (HTGR) core have been considered as the most possible reason leading to a severe accident like fission production releasing to the environment, therefore, investigation on their positions and thus seeking ways to reduce the possibility of their appearance have attracted scientists’ attention. In our previous studies, heat transfercharacteristics of a face–centered–cubic (FCC) structured pebble–bed have been discussed,and a correlation on heat transfer coefficient with Reynolds number was presented. In this study, a method, placing a small sphere in thegap area, which is able to enhance the convective heat transfer wasproposed and the effect verifiedas well. The influence of the sphere diameter on heat transfer performances wasinvestigated in details. It is concluded through results analysis that (1) inserted sphere lowered thelocal surface temperature of adjacent pebbles by varying surrounding flow field;(2) maximum velocity of the fluid and average heat transfer coefficientincreased with sphere diameter, particularly, comparing with no small sphere case, 12.95% enhancement was achieved. Such findings may provide dataand information for reactor designers, andhelp to develop a safer HTGR pebble–bedcore.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.