Issue |
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
|
|
---|---|---|
Article Number | 08001 | |
Number of page(s) | 6 | |
Section | Mixing Devices and Phenomena | |
DOI | https://doi.org/10.1051/e3sconf/201912808001 | |
Published online | 08 November 2019 |
Large eddy simulation of high atwood number rayleigh-taylor mixing
Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Istanbul Bilgi University,
34060,
Eyup, Istanbul,
Turkey
* Corresponding author: ilyas.yilmaz@bilgi.edu.tr
Large eddy simulation of Rayleigh-Taylor instability at high Atwood numbers is performed using recently developed, kinetic energy-conserving, non-dissipative, fully-implicit, finite volume algorithm. The algorithm does not rely on the Boussinesq assumption. It also allows density and viscosity to vary. No interface capturing mechanism is requried. Because of its advanced features, unlike the pure incompressible ones, it does not suffer from the loss of physical accuracy at high Atwood numbers. Many diagnostics including local mole fractions, bubble and spike growth rates, mixing efficiencies, Taylor micro-scales, Reynolds stresses and their anisotropies are computed to analyze the high Atwood number effects. The density ratio dependence for the ratio of spike to bubble heights is also studied. Results show that higher Atwood numbers are characterized by increasing ratio of spike to bubble growth rates, higher speeds of bubble and especially spike fronts, faster development in instability, similarity in late time mixing values, and mixing asymmetry.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.