Open Access
Issue
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 08001
Number of page(s) 6
Section Mixing Devices and Phenomena
DOI https://doi.org/10.1051/e3sconf/201912808001
Published online 08 November 2019
  1. Rayleigh J. W. S., 1883, Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density, Proc. London Math. Soc., 14, 170–177. [Google Scholar]
  2. Taylor G.I., 1950, The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes, Proc. Roy. Soc.A, 201, 192–196. [NASA ADS] [CrossRef] [Google Scholar]
  3. Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability, International series of monographs on physics, Clarendon Press. [Google Scholar]
  4. Youngs D., 1991, Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Phys. Fluids A, 3, 1312–1320. [CrossRef] [Google Scholar]
  5. Burton G. C., 2011, Study of ultrahigh Atwood- number Rayleigh-Taylor mixing dynamics using the nonlinear large-eddy simulation method, Phys. of Fluids, 23, 045106. [CrossRef] [Google Scholar]
  6. Dimonte G. and Schneider M., 2000, Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories, Physics of Fluids, 12, 304–321. [CrossRef] [Google Scholar]
  7. Youngs D., 2013, The density ratio dependence of self-similar Rayleigh-Taylor mixing, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 371, 20120173. [CrossRef] [Google Scholar]
  8. Shimony A., Malamud G. and Shvarts D., 2017, Density Ratio and Entrainment Effects on Asymptotic Rayleigh-Taylor Instability. ASME. J. Fluids Eng., 140, 050906–050906–8. [Google Scholar]
  9. Yilmaz I., Saygin H. and Davidson L., 2018, Application of a parallel solver to the LES modelling of turbulent buoyant flows with heat transfer, Progress in Computational Fluid Dynamics, an International Journal, 18, 89–107. [Google Scholar]
  10. Hou Y., Mahesh K., 2005, A robust, colocated, implicit algorithm for direct numerical simulation of compressible, turbulent flows, Journal of Computational Physics, 205, 205–221. [CrossRef] [Google Scholar]
  11. Yilmaz I., Edis F.O., Saygin H. and Davidson L., 2014, Parallel implicit DNS of temporally-evolving turbulent shear layer instability, Journal of Computational and Applied Mathematics, 259, 651–659. [CrossRef] [Google Scholar]
  12. Nicoud F., Ducros F., 1999, Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, Turbulence and Combustion, 62, 183–200. [CrossRef] [Google Scholar]
  13. Balay S., Gropp W. D., McInnes L. C. and Smith B. F., 2009, PETSc Users Manual, Technical ReportANL-95/11, Revision 3.1, Argonne National Laboratory. [Google Scholar]
  14. Yilmaz I., Edis F.O. and Saygin H., 2014, Application of an all-speed implicit non-dissipative DNS algorithm to hydrodynamic instabilities, Computers and Fluids, 100, 237–254. [CrossRef] [Google Scholar]
  15. Yilmaz I., Edis F.O. and Saygin H., 2015, Application of an All-Speed Implicit Finite-Volume Algorithm to Rayleigh-Taylor Instability, International Journal of Computational Methods, 12, 1550018. [CrossRef] [Google Scholar]
  16. Cook A. W., Dimotakis P. E., 2001, Transition stages of Rayleigh-Taylor instability between miscible fluids, J. Fluid Mech., 443, 69–99. [CrossRef] [Google Scholar]
  17. Jun B.I., Norman M.L. and Stone J.M., 1995, Anu- merical study of Rayleigh-Taylor instability in magnetic fluids, Astrophys. J., 453, 332–349. [NASA ADS] [CrossRef] [Google Scholar]
  18. Dimonte G., Youngs D.L., Dimits A., Weber S., Marinak M., Wunsch S., Garasi C., Robinson A., Andrews M.J., Ramaprabhu P., Calder A.C., Fryxell B., Biello J., Dursi L., MacNeice P., Olson K., Ricker P., Rosner R., Timmes F., Tufo H., Young Y.N. and Zingale M., 2004, A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-group collaboration, Physics of Fluids, 16, 1668–1693. [NASA ADS] [CrossRef] [Google Scholar]
  19. Cook A. W., Cabot W. and Miller P., 2004, The mixing transition in Rayleigh-Taylor instability, J. Fluid Mech., 511, 333–362. [NASA ADS] [CrossRef] [Google Scholar]
  20. Cook A. W. and Zhou Y., 2002, Energy transfer in Rayleigh-Taylor instability, Phys. Rev. E, 66, 026312. [CrossRef] [Google Scholar]
  21. Ramaprabhu P., 2003, On the dynamics of Rayleigh-Taylor mixing, PhD Thesis, Texas A&M University. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.