Issue |
E3S Web Conf.
Volume 165, 2020
2020 2nd International Conference on Civil Architecture and Energy Science (CAES 2020)
|
|
---|---|---|
Article Number | 03020 | |
Number of page(s) | 4 | |
Section | Geology, Mapping, and Remote Sensing | |
DOI | https://doi.org/10.1051/e3sconf/202016503020 | |
Published online | 01 May 2020 |
Tree height inversion combining light detection and ranging and optical remote sensing data
1 Electric Power Research Institute, Yunnan Power Grid Company ltd., Kunming, China 650217
2 Yunnan Power Grid Company ltd., Kunming, China 650000
Tree barriers in transmission line corridors are an important safety hazard.Scientific prediction of tree height and monitoring tree height changes are essential to solve this hidden danger. In this paper, the advantages of airborne lidar and optical remote sensing data are combined to research the method of tree height inversion. Based on glas data of lidar,waveform parameters such as waveform length, waveform leading edge length and waveform trailing edge length were extracted from waveform data by gaussian decomposition method.Terrain feature parameters were extracted from aster gdem data.The tree crown information was extracted from the optical remote sensing image by means of the mean shift algorithm. Then extract the vegetation index with high correlation with tree height.Finally, the extracted waveform feature parameters, topographic feature parameters, and crown index and vegetation index with high correlation are used as model input variables. The tree height inversion model was established using four regression methods, including multiple linear regression (mlr), support vector machine (svm), random forest (rf), and bp neural network (bpnn). The accuracy evaluation was conducted, and it was concluded that the tree height inversion model based on random forest obtained the best accuracy effect.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.