Issue |
E3S Web Conf.
Volume 168, 2020
II International Conference Essays of Mining Science and Practice
|
|
---|---|---|
Article Number | 00052 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/202016800052 | |
Published online | 06 May 2020 |
Outburst cavity formation in the working face driven along the outburst-prone coal seam
1
Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine, 49005, Dnipro, Simferopolska Str., 2a, Ukraine
2
College of Construction Engineering, Jilin University, 130021, Changchun, Ximinzhu Str., 938, China
* Corresponding author: igtm@ukr.net
In Donbas coal mines, coal and gas outbursts present a major risk for the mining operation safety. Rapidly released energy can cause serious damage to the mine’s personnel and production equipment. Modern numerical methods allow modeling complex physical processes occurred during the coal and gas outbursts. The mathematical model was developed for the coupled processes of the rock massif deformation and gas filtration in the mine face near the tectonic dislocation. When solving the problem, the finite element method was used. The calculation results of the stresses, inelastic deformation zones, pressures of methane and configuration of cavity of the coal and gas outburst are represented in the paper. It is shown that an outburst cavity is formed inside the coal seam and is bounded from above and from below by the host rocks. The calculated geometry of the fracture cavity at the gas-dynamic phenomena in the mine working face coincides with actual data obtained in the mines of Donbas and, therefore, confirms the adequacy of the developed mathematical model.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.