Issue |
E3S Web Conf.
Volume 171, 2020
The 9th International Scientific-Technical Conference on Environmental Engineering, Photogrammetry, Geoinformatics – Modern Technologies and Development Perspectives (EEPG Tech 2019)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 12 | |
Section | Photogrammetry, Geoinformatics | |
DOI | https://doi.org/10.1051/e3sconf/202017102002 | |
Published online | 09 June 2020 |
High-resolution urban air quality monitoring using sentinel satellite images and low-cost ground-based sensor networks
1 Hochschule für Technik Stuttgart, Schellingstrasse 24, D-70174 Stuttgart, Germany
* Corresponding author: joseph.gitahi@hft-stuttgart.de
Satellite remote sensing aerosol monitoring products are readily available but limited to regional and global scales due to low spatial resolutions making them unsuitable for city-level monitoring. Freely available satellite images such as Sentinel -2 at relatively high spatial (10m) and temporal (5 days) resolutions offer the chance to map aerosol distribution at local scales. In the first stage of this study, we retrieve Aerosol Optical Depth (AOD) from Sentinel -2 imagery for the Munich region and assess the accuracy against ground AOD measurements obtained from two Aerosol Robotic Network (AERONET) stations. Sen2Cor, iCOR and MAJA algorithms which retrieve AOD using Look-up-Tables (LUT) pre-calculated using radiative transfer (RT) equations and SARA algorithm that applies RT equations directly to satellite images were used in the study. Sen2Cor, iCOR and MAJA retrieved AOD at 550nm show strong consistency with AERONET measurements with average correlation coefficients of 0.91, 0.89 and 0.73 respectively. However, MAJA algorithm gives better and detailed variations of AOD at 10m spatial resolution which is suitable for identifying varying aerosol conditions over urban environments at a local scale. In the second stage, we performed multiple linear regression to estimate surface Particulate Matter (PM2.5) concentrations using the satellite retrieved AOD and meteorological data as independent variables and ground-measured PM2.5 data as the dependent variable. The predicted PM2.5 concentrations exhibited agreement with ground measurements, with an overall coefficient (R2) of 0.59.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.