Open Access
E3S Web Conf.
Volume 171, 2020
The 9th International Scientific-Technical Conference on Environmental Engineering, Photogrammetry, Geoinformatics – Modern Technologies and Development Perspectives (EEPG Tech 2019)
Article Number 02002
Number of page(s) 12
Section Photogrammetry, Geoinformatics
Published online 09 June 2020
  1. United Nations. World Urbanization Prospects: The 2018 Revision, New York, 2019. Available online: (accessed on 8 February 2019). [Google Scholar]
  2. Kaufman Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing 1988, 9, 1357–1381, doi:10.1080/01431168808954942. [Google Scholar]
  3. Kaufman Y.J.; Wald A.E.; Remer L.A.; Gao, B.-C.; Li, R.-R.; Flynn, L. The MODIS 2.1- um Channel—Correlation with Visible Reflectance for Use in Remote Sensing of Aerosol. IEEE Trans. Geosci. Remote Sensing 1997, 35, 1286–1298, doi:10.1109/36.628795. [Google Scholar]
  4. Gillingham S.S.; Flood, N.; Gill T.K.; Mitchell R.M. Limitations of the dense dark vegetation method for aerosol retrieval under Australian conditions. Remote Sensing Letters 2012, 3, 67–76, doi:10.1080/01431161.2010.533298. [Google Scholar]
  5. Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sensing 2015, 7, 2668–2691, doi:10.3390/rs70302668. [Google Scholar]
  6. Hagolle, O.; Hug, M.; Desjardins, C.; Auer, S.; Richter, R. Maja Algorithm Theoretical Basis Document, 2017. Available online: (accessed on 8 February 2019). [Google Scholar]
  7. Remer L.A.; Mattoo, S.; Levy R.C.; Munchak L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844, doi:10.5194/amt-6-1829-2013. [Google Scholar]
  8. Wu, Y.; Graaf, M. de; Menenti, M. Improved MODIS Dark Target aerosol optical depth algorithm over land: Angular effect correction. Atmos. Meas. Tech. 2016, 9, 5575–5589, doi:10.5194/amt-9-5575-2016. [Google Scholar]
  9. North, P.; Heckel, A. Sentinel‐3 Optical Products and Algorithm Definition. SYN Algorithm Theoretical Basis Document No. 2.3, 2010. Available online: (accessed on 8 March 2019). [Google Scholar]
  10. Giles D.M.; Sinyuk, A.; Sorokin M.G.; Schafer J.S.; Smirnov, A.; Slutsker, I.; Eck T.F.; Holben B.N.; Lewis J.R.; Campbell J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209, doi:10.5194/amt-12-169-2019. [Google Scholar]
  11. Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Image and Signal Processing for Remote Sensing XXIII, 2017; p 1042704. [Google Scholar]
  12. Louis, J.; Debaecker, V.; Pflug, B.; Main-Korn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A Processor for Users. In Living Planet Symposium, 2016; p 91. [Google Scholar]
  13. Richter, R.; Louis, J.; Berthelot, B. Sentinel-2 MSI – Level 2A Products Algorithm Theoretical Basis Document Issue 1.8, 2011. Available online: (accessed on 8 February 2019). [Google Scholar]
  14. Keukelaere, L. de; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; van der Zande, D.; et al. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters. European Journal of Remote Sensing 2018, 51, 525–542, doi:10.1080/22797254.2018.1457937. [Google Scholar]
  15. Guanter, L.; Alonso, L.; Moreno, J. First results from the PROBA/CHRIS hyperspectral/multiangular satellite system over land and water targets. IEEE Geoscience and Remote Sensing Letters 2005, 2, 250–254, doi:10.1109/LGRS.2005.851542. [Google Scholar]
  16. Guanter Palomar, L. New algorithms for atmospheric correction and retrieval of biophysical parameters in Earth Observation. Application to ENVISAT/MERIS data; Universitat de València, 2007, ISBN 9788469307618. [Google Scholar]
  17. Bilal, M.; Nichol J.E.; Bleiweiss M.P.; Dubois, D. A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces. Remote Sensing of Environment 2013, 136, 135–145, doi:10.1016/j.rse.2013.04.014. [Google Scholar]
  18. Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sensing of Environment 2019, 231, 111205, doi:10.1016/j.rse.2019.05.024. [Google Scholar]
  19. Baetens, L.; Desjardins, C.; Hagolle, O. Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure. Remote Sensing 2019, 11, 433, doi:10.3390/rs11040433. [Google Scholar]
  20. Rahman, H.; Verstraete M.M.; Pinty, B. Coupled surface-atmosphere reflectance (CSAR) model: 1. Model description and inversion on synthetic data. J. Geophys. Res. 1993, 98, 20779, doi:10.1029/93JD02071. [Google Scholar]
  21. Vermote E.F.; Tanre, D.; Deuze J.L.; Herman, M.; Morcette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sensing 1997, 35, 675–686, doi:10.1109/36.581987. [Google Scholar]
  22. Bodhaine B.A.; Wood N.B.; Dutton E.G.; Slusser J.R. On Rayleigh Optical Depth Calculations. J. Atmos. Oceanic Technol. 1999, 16, 1854–1861, doi:10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2. [Google Scholar]
  23. Berberan-Santos M.N.; Bodunov E.N.; Pogliani, L. On the barometric formula. American Journal of Physics 1997, 65, 404–412, doi:10.1119/1.18555. [Google Scholar]
  24. Levy R.C.; Remer L.A.; Mattoo, S.; Vermote E.F.; Kaufman Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. 2007, 112, doi:10.1029/2006JD007811. [Google Scholar]
  25. Liu, F.; Tan, Q.-W.; Jiang, X.; Jiang, W.-J.; Song, D.-L. Effect of Relative Humidity on Particulate Matter Concentration and Visibility During Winter in Chengdu. Huan Jing Ke Xue. 2018, 39, 1466–1472, doi:10.13227/j.hjkx.201707112. [Google Scholar]
  26. Munir, S.; Habeebullah T.M.; Mohammed A.M.F.; Morsy E.A.; Rehan, M.; Ali, K. Analysing PM2.5 and its Association with PM10 and Meteorology in the Arid Climate of Makkah, Saudi Arabia. Aerosol Air Qual. Res. 2017, 17, 453–464, doi:10.4209/aaqr.2016.03.0117. [Google Scholar]
  27. Li, Y.; Chen, Q.; Zhao, H.; Wang, L.; Tao, R. Variations in PM10, PM2.5 and PM1.0 in an Urban Area of the Sichuan Basin and Their Relation to Meteorological Factors. Atmosphere 2015, 6, 150–163, doi:10.3390/atmos6010150. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.