Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 06003 | |
Number of page(s) | 6 | |
Section | Indoor climate | |
DOI | https://doi.org/10.1051/e3sconf/202017206003 | |
Published online | 30 June 2020 |
Cold windows induced airflow effects on the thermal environment for a large single-zone building
1 School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P.R. China
2 Department of Applied Physics and Electronics, Umeå University, SE-90187 Umeå, Sweden
* Corresponding author: thomas.olofsson@umu.se
With access to modern building technologies and HVAC-systems, it is possible to obtain low energy use and good thermal comfort for complex design, such as large building volumes. However, the situation is different for large single zone buildings with large volumes. They often have insufficient thermal comfort. The problem could be partially attributed to the unwanted airflows due to the cold surfaces, especially the windows. With increased knowledge of the airflow, it is possible to identify suitable renovation strategies in such buildings. In this work, we study a church building with mechanical air change system and floor heating. CFD-simulations with dynamic airflow was conducted based on building geometries and technical data. The validation was based on data from the ventilation control and the space-heating system. The results show how the window-to-wall ratios and the positions of windows affect the thermal comfort. It contributes with knowledge of advantages and disadvantages of different envelope design in the existing environment with floor heating.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.