Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 07011 | |
Number of page(s) | 7 | |
Section | Moisture performance of structures | |
DOI | https://doi.org/10.1051/e3sconf/202017207011 | |
Published online | 30 June 2020 |
Experimental investigation and hygrothermal modelling of freeze-thaw process of saturated fired clay materials including supercooling phenomenon
1 Kyoto University, Graduate School of Engineering, 615-8540 Kyoto, Japan
2 Hokaido Research Organization, Building Research Department, 078-8801 Asahikawa, Japan
* Corresponding author: be.fukui-k1820@archi.kyoto-u.ac.jp
To investigate the supercooling phenomenon in fired clay materials, low-temperature differential scanning calorimetry (DSC) and a one-dimensional freeze-thaw (FT) experiment were performed on saturated specimens. The rate of increase in ice saturation during freezing was calculated from the DSC result. Rapid ice growth over a relatively narrow temperature range (within about 0.2 K) was observed at a cooling rate of 0.25 K/min. In the FT experiment, the temperature distribution of a specimen was measured with inserted thermocouples. According to the results of the FT experiment, a rapid temperature increase was observed at sub-zero temperatures accompanied by freezing of the supercooled water. When the supercooled water began to freeze, the released latent heat was found to strongly prevent the specimen temperature from dropping even during the cooling period. Finally, a hygrothermal model of freezing and thawing including a non-equilibrium supercooling process was developed. The freezing rate of the supercooled water was modelled based on the DSC result. The validity of the model was verified by comparing the results of the FT experiment and calculations. The model was found to be able to replicate the rapid temperature rise during the cooling period of the FT experiment.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.