Issue |
E3S Web Conf.
Volume 180, 2020
9th International Conference on Thermal Equipments, Renewable Energy and Rural Development (TE-RE-RD 2020)
|
|
---|---|---|
Article Number | 02012 | |
Number of page(s) | 11 | |
Section | Renewable Energy | |
DOI | https://doi.org/10.1051/e3sconf/202018002012 | |
Published online | 24 July 2020 |
IoT solution for monitoring indoor climate parameters in open space offices
1
Mechatronics and Precision Mechanics Department, Faculty of Mechanical Engineering and Mechatronics, University “POLITEHNICA” of Bucharest, RO
2
Faculty of Informatics, Titu Maiorescu University, Bucharest, RO
3
ARCHIBUS Solution Center Romania, Bucharest, RO
* Corresponding author: ioana.udrea@upb.ro, udreaioana@yahoo.com
Although there are numerous high performance BMS (Building Management System), which monitor the indoor climate parameters, data access, sensor positioning, and other aspects may not be under control. On the other hand, IoT (Internet of Things) is experiencing exponential growth, as more and more devices and sensors are connected to the cloud. Thus, a sensor monitoring solution for indoor climate parameters was developed. The proposed solution is not expensive, and it is based on a Raspberry Pi board endowed with temperature, humidity, and pressure sensors. The developed application reads the values detected by the sensors, processes the date, and afterwards transmit the information to the IoT ThingSpeak platform. The large area is characteristic of open space offices, so the influence of radiant walls is small, and the operative temperature can be approximate with air temperature. This type of building is conditioned by the air conditioning system, so the air speed in this indoor environment is usually low and could be approximated by the design. So, with the data read by the developed solution the thermal comfort parameters can be approximated. If inadequate values are found, teams that carry out complex and precise measurements could be sent to the site. To achieve this goal a PMV calculator software is developed. Its validity is tested in accordance with the European standard ISO 7730. After that, the PMV computer is used with data read from sensors. Both the data read from the sensors and the newly calculated PMV are sent to the ThingSpeak IoT platform.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.