Issue |
E3S Web Conf.
Volume 180, 2020
9th International Conference on Thermal Equipments, Renewable Energy and Rural Development (TE-RE-RD 2020)
|
|
---|---|---|
Article Number | 04019 | |
Number of page(s) | 7 | |
Section | Miscellaneous | |
DOI | https://doi.org/10.1051/e3sconf/202018004019 | |
Published online | 24 July 2020 |
Determination of the minimum wind speed leading to the galloping of conductors
1
Department of Power Engineering, Almaty Technological University, Tole bi Str., 100, Kazakhstan
2
University of Telecommunications and Post – Sofia, 1 Academician Stefan Mladenov Str., 1700 Sofia, Bulgaria
3
Department of Power Engineering KazATC after named M.Tynyshpayev, Shevchenko Str., 97, Kazakhstan
* Corresponding author: diana_edubg@abv.bg
The object of research in this paper is the split phase of overhead power lines. The study of the aeroelastic instability of the icy conductors of the split phase for a multi-span system has already been explored using the method of determining the Hurwitz stability criterion. In multi-span systems, where conductors are interconnected through a garland of insulators, the garlands themselves are involved in an oscillatory process. As a result of this, mutual influence of adjacent spans is observed energy is transferred from one span to another. The paper investigates the aeroelastic instability of the icy conductors of the split phase in the anchor span, which is characterized by two intrinsic features: the attachment point of conductors on the supports is fixed and mutual effects between adjacent spans are not observed. The study of motion instability is carried out by the first approximation method, that is, on the basis of linearization of the nonlinear equation at the equilibrium point and further investigation of the linearized equation in the vicinity of this point. The results of the study are based on the novelty of the carried out experiments - taking into account the peculiarities of the anchor span and the findings based on the analysis of empirical data.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.