Open Access
E3S Web Conf.
Volume 180, 2020
9th International Conference on Thermal Equipments, Renewable Energy and Rural Development (TE-RE-RD 2020)
Article Number 04019
Number of page(s) 7
Section Miscellaneous
Published online 24 July 2020
  1. J.L. Lilien, D.G. Havard. Galloping Data Base on single and bundle conductors. Prediction of Maximum Amplitudes. IEEE Trans. power delivery. 15(2), pp.670-674 (2000) [CrossRef] [Google Scholar]
  2. C.B. Gurung, H. Yamaguchi, T. Yukino. Identification of large amplitude wind-induced vibration of ice-accreted transmission lines based on field observed data. J.Engineering Structures, 24 pp. 179-188 (2002) [CrossRef] [Google Scholar]
  3. O. Chabart, J.L. Lilien. Galloping of electrical lines in wind tunnel facilities. J.Wind engineering and industrial aerodynamics 74-76, pp. 967-976 (1998) [CrossRef] [Google Scholar]
  4. P. V. Dyke, Andre Laneville. Galloping of a single conductor covered with a D-section on a high-voltage overhead test line. J. Wind engineering and industrial aerodynamics 96, pp.1141-1151(2008) [CrossRef] [Google Scholar]
  5. L. Zhou, B. Yan, L. Zhang, S. Zhou. Study on galloping behavior of iced eight bundle conductor transmission lines. J. Sound and vibration 362, pp.85-110(2016) [CrossRef] [Google Scholar]
  6. Y.N. Bocharov, V.V. Titkov, R. Abitaeva, A.B. Bekbaev, M.A. Djamambaev. Torsion vibrations of splitted conductor of overhead transmissions. St. Petersburg polytechnic university. Engineering sciences and technology, 23(1), pp.84-91(2017) [Google Scholar]
  7. Y. Zhitao, L. Zh., S. Eric, L. William E. Galloping of a single iced conductor based on curved-beam theory. J. Wind eng. ind. aerodyn. 123, pp.77-87, (2013) [CrossRef] [Google Scholar]
  8. Y. Zhitao, S. Eric, L. Zh., L. William E. Galloping of iced quad-conductors bundles based on curved beam theory. J. Sound and vibration 333, pp. 1657-1670. (2014) [CrossRef] [Google Scholar]
  9. W.Y. Ma, Q.K. Liu, X.Q. Du, Y.Y. Wei. Effect of the Reynolds number on the aerodynamic forces and galloping instability of a cylinder with semi-elliptical cross sections. J. Wind eng. ind. aerodyn. 146, pp. 71-80, (2015) [CrossRef] [Google Scholar]
  10. A. Joly, S. Etienne, D. Pelletier Galloping of square cylinders in cross-flow at low Reynolds numbers. J. Fluids and structures 28, pp. 232-243, (2012) [CrossRef] [Google Scholar]
  11. P. Augustin. Fluttering of the “electrical line galloping” type for conductors of continuous mass, Buletinul institutulul politehnic “Gheorghe Gheorghiu-dej” Bucuresti. TVomul. XXIX, 3, рр. 103-107, (1967) [Google Scholar]
  12. V.I. Vanko, I.K. Marchevsky. Pitching conductors of PLW Lyapunov instability. Energy. News of higher educational institutions and energy associations of the CIS. 6, рр. 14-23, (2014) [in Russian] [Google Scholar]
  13. L.K. Marchevsky. Mathematical modeling of the flow around a profile and research of its stability in a stream according to Lyapunov / dissertation abstract for the degree of candidate of physical and mathematical sciences. //. M.: N.E. Bauman MSTU, (2008), [in Russian] [Google Scholar]
  14. V.Ya. Gorin, N.N. Davidson, E.A. Marasina. Methodology for determining the critical wind speed when galloping conductors of overhead power lines. // Science.Pratsi DonNTU, seriya “Electrical Engineering and Energy”, 7 (128). Donetsk: DVNZ DonNTU, pp. 52-57, (2009), [in Russian] [Google Scholar]
  15. F.N. Shklyarchuk, A.N. Danilin. Nonlinear vibrations and galloping of conductors with icing. Bulletin of TulSU. Technical science. Energy, electricity, electric drive. 11 (188), pp. 188-197, (2013), [in Russian] [Google Scholar]
  16. V.A. Feldstein, S.V. Kolosov, S.V. Ryzhov. VL conductor gallope model and calculation of protective equipment. M.: IAC “Energy”. pp. 145-156. (2010), [in Russian] [Google Scholar]
  17. M.A. Dzhamanbaev, N. Tokenov Mathematical model of the dance of the split phase of overhead power lines (anchor span) / proceedings of the II international scientific conference “High Technologies the Key to Sustainable Development”, /. Almaty, KazNTU named after K.I. Satbaev. vol. II, p. 5. (2013), [in Russian] [Google Scholar]
  18. N. Tokenov, M. Dzhamanbayev, A. Bekbayev, D. Eskendirova, O. Baimuratov. Mathematical Model for Calculating Aerodynamic Characteristics of Overhead Transmission Lines. J. Applied Mechanics and Materials. 610, pp 52-59. (2014) [CrossRef] [Google Scholar]
  19. M.A. Dzhamanbaev, K.S. Chakeeva, J.E. Karataeva, Z.A. Dzhumabekova. The method of calculating critical wind speeds in determining the area of aerodynamic instability of the conductors of the split phase of a multi-span power line // J. Measuring equipment, 6, pр. 25-30. (2019), [in Russian] [Google Scholar]
  20. Terziev A., Analysis of the terrain specifics and roughness factor on the wind shear over complex terrains, IOP Conference Series Materials Science and Engineering 595:012043, September 2019, DOI: 10.1088/1757-899X/595/1/012043 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.