Issue |
E3S Web Conf.
Volume 184, 2020
2nd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED 2020)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 3 | |
DOI | https://doi.org/10.1051/e3sconf/202018401009 | |
Published online | 19 August 2020 |
Dynamics and an efficient malware detection system using opcode sequence graph generation and ml algorithm
1 Asst.Professor, GRIET, Information Technology Department, Hyderabad, India.
2 UG Student, GRIET, Information Technology Department, Hyderabad, India
IoT(Internet of things), for the most part, comprises of the various scope of Internet-associated gadgets and hubs. In the context of military and defence systems (called as IoBT) these gadgets could be personnel wearable battle outfits, tracking devices, cameras, clinical gadgets etc., The integrity and safety of these devices are critical in mission success and it is of utmost importance to keep them secure. One of the typical ways of the attack on these gadgets is through the use of malware, whose aim could be to compromise the device and or breach the communications. Generally, these IoBT gadgets and hubs are a much more significant target for cyber criminals due to the value they pose, more so than IoT devices. In this paper we attempt at creating a significant learning based procedure to distinguish, classify and tracksuch malware in IoBT(Internet of battlefield things) through operational codes progression. This is achieved by transforming the aforementioned OpCodes into a vector space, upon which a Deep Eigen space learning technique is applied to differentiate between harmful and safe applications. For robust classification, Support vector machine and n gram Sequencing algorithms are proposed in this paper. Moreover, we evaluate the quality of our proposed approach in malware recognition and also its maintainability against garbage code injection assault. These results are presented on a web page which has separate components and levels of accessibility for user and admin credentials. For the purpose of tracking the prevalence of various malwares on the network, counts and against garbage code injection assault. These results are presented on a web page which has separate components and levels of accessibility for user and admin credentials. For the purpose of tracking the prevalence of various malwares on the network, counts and trends of different malicious opcodes are displayed for both user and admin. Thereby our proposed approach will be beneficial for the users, especially for those who want to communicate confidential information within the network. It is also beneficial if a user wants to know whether a message is secure or not. This has also been made malware test accessible, which ideally will profit future research endeavors.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.