Issue |
E3S Web Conf.
Volume 187, 2020
The 13th Thai Society of Agricultural Engineering International Conference (TSAE 2020)
|
|
---|---|---|
Article Number | 04007 | |
Number of page(s) | 8 | |
Section | Postharvest and Food Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202018704007 | |
Published online | 08 September 2020 |
Drying kinetics of passion fruit peel for tea products
Chiang Mai University, Department of Mechanical Engineering, 50200 Chiang Mai, Thailand
* Corresponding author: woontrw@gmail.com
† Corresponding author: siva@dome.eng.cmu.ac.th
An important step in the development of passion fruit tea products is the drying procedure. This procedure uses a lot of energy. The optimization of drying needs knowledge of the drying kinetics. This paper focuses the development of drying kinetics for passion fruit peel. The experiments were conducted utilizing a thin layer dryer with drying air temperatures in the range of 45°C to 65°C The drying air velocity was constant at 1 m/s. The passion fruit peel were dried from their initial moisture content of 559±16% db to a final moisture content of 50±1% db. The models for the kinetic drying proposed by the authors are the Newton model, Page model and the Logarithmic model. The parameters for the drying kinetic models were found by curve fitting the experimental data using non-linear regression. The criteria for evaluating the models were the coefficient of determination (R2), a root mean square error (RMSE) and a reduced chi- square (x2). It was found that the drying kinetic model for passion fruit peel which gave the best fit was the Page model. This drying kinetic model can be applied to find optimum drying conditions.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.