Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 01028 | |
Number of page(s) | 6 | |
Section | Field Studies and Engineering Applications | |
DOI | https://doi.org/10.1051/e3sconf/202019501028 | |
Published online | 16 October 2020 |
Coupled hydro-mechanical modelling of a 1995 Hong Kong landslide
1 University of Salerno, Department of Civil Engineering, Italy
2 Deltares, Delft, the Netherlands
* Corresponding author: scuomo@unisa.it
The paper deals with the modelling of the instability mechanism induced by rainfall in an unsaturated cut-slope. A large-sized landslide occurred in 1995 in Hong Kong (the so-called “Fei Tsui Road landslide”). It was here analysed because it was characterized by unusual dimensions and very large runout distance for the study area. The slope failure was attributed to a decrease in soil shear strength due to the rise of a perched water table above a weak kaolin-rich layer, together with the loss of suction caused by water infiltration during a heavy rainfall event. The hydro-mechanical coupled analyses made through the commercial software Plaxis 2D aimed to investigate the relations between the hydrological variables (i.e., rainfall infiltration, suction, saturation) and the slope response in terms of changes in soil resistance and soil plastic deformations. The study demonstrates that the evaluation of the hydro-mechanical coupling effects on the hydraulic slope response as well as on the stability of the whole slope is a crucial issue to well capture the mechanical behaviour of the unsaturated cut-slope. Different failure scenarios have been also considered in order to match the field observations and to back-analyse the initial condition of the slope before landslide.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.