Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 03022 | |
Number of page(s) | 6 | |
Section | Experimental Evidence and Techniques | |
DOI | https://doi.org/10.1051/e3sconf/202019503022 | |
Published online | 16 October 2020 |
Determination of hydraulic conductivity and shear strength properties of unsaturated residual soil from flysch rock mass
1 University of Rijeka, Faculty of Civil Engineering. Radmile Matejčić 3, 51000 Rijeka, Croatia
2 University of Salerno, Lab. Geotechnics, Department of Civil Engineering, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
Slopes in flysch deposits areas wide within Europe are highly prone to landslide occurrence. Depending on the material properties and climate conditions, instabilities in a form of earthflows, shallow and deep-seated landslides were observed in these formations. Typically, slope instabilities occurred after prolonged periods of rainfall. The Rječina River Valley, Croatia, built in flysch formation, is well known by several landslides occurred in the past. The weathering process of flysch rock mass and local climate conditions resulted in a specific engineering geological profile of the valley, with the unsaturated residual soil covering the bedrock. Although the behaviour of residual soil is important for a landslide triggering both through the rainfall infiltration process and (unsaturated) shear strength, hydro-mechanical properties of this material in unsaturated conditions were not investigated in the past. This paper summarizes the results of different laboratory tests performed on intact samples for hydro-mechanical characterization of the residual soil from flysch rock mass. It was found that the unique shear strength envelope could be used to determine failure conditions both for saturated and unsaturated conditions. The results obtained from strain-controlled and wetting tests performed in conventional and modified direct shear apparatuses indicated high values of the apparent cohesion that the near-surface soil can experience due to the increase of matric suction. The hysteresis effects and hydraulic paths to which soil was exposed to in the past were found to affect the soil behaviour, while the soil formation process results with a complex soil structure that imposes the necessity of using intact soil samples for proper hydraulic characterization of the soil.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.