Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 01033 | |
Number of page(s) | 6 | |
Section | Field Studies and Engineering Applications | |
DOI | https://doi.org/10.1051/e3sconf/202019501033 | |
Published online | 16 October 2020 |
Hydro-mechanical behaviour of a sandy silt from a river embankment
1 Dipatimento di Ingegneria – DI, Università degli Studi di Palermo, 90133 Palermo, Italy
2 Laboratory of Soil Mechanics – Ecole Polytechnique Fédérale de Lausanne, Switzerland
3 Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali – DICAM, Università di Bologna, 40126 Bologna, Italy
* Corresponding author: vincenzo.buttice@unipa.it
The paper presents the results of an experimental campaign aimed at characterizing the hydro-mechanical behaviour of a sandy silt from a river embankment. Due to continuous river level fluctuations and changing climatic and environmental conditions, flood embankment materials experience frequent variations in degree of saturation and suction values. Such variations strongly impact the earthwork performance both in terms of seepage and stability conditions. For these reasons, a detailed characterization of the material behaviour in unsaturated conditions was carried out. Experiments were designed in order to highlight the response of the involved soil in terms of changes in matric suction and confining stress. All tests were performed on undisturbed samples from the embankment. To cover the suction range, which is expected to be significant for the material and assessed through field monitoring, a combination of several suction-control and suction-measurement techniques was used (e.g. negative water column, axial translation, tensiometers). Obtained results enabled (i) to quantify the evolution of the yield stress with suction, (ii) to assess the collapse upon wetting behaviour, (iii) to get detailed information on the water retention behaviour and (iv) to define the relative permeability of the soil. This extensive characterization work serves as a basis for the analysis of the embankment response following river level variations, the final purpose of the research being to establish a reliable methodology and a feasible procedure for the realistic assessment of the safety margins under transient seepage.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.