Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 05007 | |
Number of page(s) | 6 | |
Section | Special Session on Biocementation | |
DOI | https://doi.org/10.1051/e3sconf/202019505007 | |
Published online | 16 October 2020 |
Benefits and drawbacks of applied direct currents for soil improvement via carbonate mineralization
Swiss Federal Institute of Technology Lausanne (EPFL), Soil Mechanics Laboratory, EPFL ENAC IIC LMS Station 18 CH-1015, Lausanne, Switzerland
* Corresponding author: dimitrios.terzis@epfl.ch
The study presented herein adopts a new vision of the processes involved in carbonate mineralization induced by MICP from an electrochemical and crystal growth perspective. More precisely a specific line of focus refers to the species involved in the bio-chemical reactions and especially their net particle charge. By altering electro-chemical conditions via the application of direct electric currents, we observe distinctive trends related to: (i) overall reaction efficiency; (ii) carbonate mineralization/dissolution and (iii) spatial distribution of precipitates. The study introduces the concept of EA-MICP which stands for Electrically Assisted MICP as a means of improving the efficiency of soil bio-consolidation and overcoming various challenges which were previously reported in conventional MICP-based works. Results reveal both the detrimental and highly beneficial role that electric currents can hold in the complex, reactive and transport processes involved. An interesting finding is the “doped” morphology of calcite crystals, precipitated under electric fields, validated by microstructural observations.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.