Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 13 | |
Section | Sustainable Mobility | |
DOI | https://doi.org/10.1051/e3sconf/202019705001 | |
Published online | 22 October 2020 |
Ammonia as hydrogen carrier for realizing distributed on-site refueling stations implementing PEMFC technology
1
University Cassino and Southern Lazio, Cassino, Italy
2
University of Naples “Parthenope”, Naples, Italy
3
ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Naples, Italy
* Corresponding author: simona.dimicco@uniparthenope.it
Ammonia is a particularly promising hydrogen carrier due to its relatively low cost, high energy density, its liquid storage and to its production from renewable sources. Thus, in recent years, great attention is devoted to this fuel for realizing next generation refueling stations according to a carbon-free energy economy. In this paper a distributed onsite refueling station (200 kg/day of hydrogen filling 700-bar HFCEVs (Hybrid Fuel Cell Electric Vehicles) with about 5 kg of hydrogen in 5 min), based on ammonia feeding, is studied from the energy and economic point of views. The station is designed with a modular configuration consisting of more sections: i) the hydrogen production section, ii) the electric energy supplier section, iii) the compression and storage section and the refrigeration/dispenser section. The core of the station is the hydrogen production section that is based on an ammonia cracking reactor and its auxiliaries; the electric energy demand necessary for the station operation (i.e. the hydrogen compression and refrigeration) is satisfied by a PEMFC (Proton-Exchange Membrane Fuel Cell) power module. Energy performance, according to the hydrogen daily demand, has been evaluated and the estimation of the levelized cost of hydrogen (LCOH) has been carried out in order to establish the cost of the hydrogen at the pump that can assure the feasibility of this novel refueling station.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.