Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 06012 | |
Number of page(s) | 11 | |
Section | Internal Combustion Engines | |
DOI | https://doi.org/10.1051/e3sconf/202019706012 | |
Published online | 22 October 2020 |
Comparison Between Experimental and Simulated Knock Statistics Using an Advanced Fuel Surrogate Model
Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vivarelli 10, Modena 41125, Italy
* Corresponding author: francesco.cicci@unimore.it
The statistical tendency of a GDI spark-ignition engine to undergo knocking combustion as a consequence of spark timing variation is numerically investigated. In particular, attention is focused on the importance to match combustion-relevant and knock-relevant fuel properties to ensure consistency with the experimental evidence. An inhouse surrogate formulation methodology is used to emulate real gasoline properties, comparing fuel models of increasing complexity. Knock is investigated using a proprietary statistical knock model (GruMo Knock Model, GK-PDF). The model can infer a log-normal distribution of knock intensity within a RANS formalism, by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. The calculated distributions are compared to measured statistical distributions. The proposed numerical/experimental comparison constitutes an advancement in synthetic chemistry integration into 3D-CFD combustion simulations.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.