Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 06018 | |
Number of page(s) | 11 | |
Section | Internal Combustion Engines | |
DOI | https://doi.org/10.1051/e3sconf/202019706018 | |
Published online | 22 October 2020 |
Impact of Grid Density on the Analysis of the In-Cylinder Flow of an Optical Engine
Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena 41125, Italy
* Corresponding author: alessio.barbato@unimore.it
The evaluation of Internal Combustion Engine (ICE) flows by 3D-CFD strongly depends on a combination of mutually interacting factors, among which grid resolution, closure model, numerics. A careful choice should be made in order to limit the extremely high computational cost and numerical problems arising from the combination of refined grids, high-order numeric schemes and complex geometries typical of ICEs. The paper focuses on the comparison between different grid strategies: in particular, attention is focused firstly on near-wall grid through the comparison between multi-layer and single-layer grids, and secondly on core grid density. The performance of each grid strategy is assessed in terms of accuracy and computational efficiency. A detailed comparison is presented against PIV flow measurements of the Spray Guided Darmstadt Engine available at the Darmstadt University of Technology. As many research groups are simultaneously working on the Darmstadt engine using different CFD codes and meshing approaches, it constitutes a perfect environment for both method validation and scientific cooperation. A motored engine condition is chosen and the flow evolution throughout the engine cycle is evaluated on two different section planes. Pros and cons of each grid strategy are highlighted and motivated.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.