Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 10006 | |
Number of page(s) | 13 | |
Section | Heat Transfer and Fluid Dynamics | |
DOI | https://doi.org/10.1051/e3sconf/202019710006 | |
Published online | 22 October 2020 |
Investigation on Thermal and Fluid Dynamic Behaviors in Mixed Convection in Horizontal Channels with Aluminum Foam and Heated from Below
Dipartimento di Ingegneria, Università degli Studi della Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa (CE), Italy
* Corresponding author: oronzio.manca@unicampania.it
In this paper, mixed convection in a horizontal channel partially filled with a porous medium and the lower wall heated at uniform heat flux is studied experimentally and numerically. A simplified two-dimensional problem is modelled and solved numerically. The domain is made of a principal channel and two channels with adiabatic walls, one upstream and the other one downstream the principal channel. The heated wall temperature profiles as a function of the Ri values are presented. Average Nusselt numbers are evaluated. The experimental test section is made up of a horizontal wall and a parallel adiabatic wall. The distance between the horizontal walls is equal to 40 mm. The porous medium is an aluminium foam and it is placed over the heated lower wall. The porous plate has a thickness equal to 20 mm. The aluminium foam has 10, 20 and 40 PPI. The experiments are performed with working fluid air. The Reynolds numbers investigated are between 5.0 and 250, these being in the laminar regime. The Richardson number, Ri, holds values in the range 1 2000. Results in terms of wall temperature profiles, local and average Nusselt numbers are presented for different Reynolds and Rayleigh number values. Some comparison between experimental and numerical results are accomplished.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.