Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 10007 | |
Number of page(s) | 12 | |
Section | Heat Transfer and Fluid Dynamics | |
DOI | https://doi.org/10.1051/e3sconf/202019710007 | |
Published online | 22 October 2020 |
Measurement of Internal Heat Transfer Distribution of Highly-Loaded Gas Turbine Blade by Combined Experimental/Numerical Method
Department of Industrial Engineering, University of Florence, 50139, via S.Marta 3, Florence, Italy
* e-mail: asif.ali@unifi.it
To ensure a passable life span of gas turbine hot gas path components the measurement of metal surface temperature is paramount. Experimental analyses on internally cooled devices are often performed on simplified or scaled up geometries, which reduces the applicability of the results to the actual real hardware. A more reliable estimation of cooling performance could be obtained if the real engine component is directly studied. To achieve this goal, an experimental campaign is performed to investigate the internal heat transfer distribution of an industrial blade, cooled by means of an internal U-shaped channel. During the experiment the blade is heated to a known temperature, then a coolant is introduced through the internal channel to induce a thermal transient, during which the external surface temperature is measured with the help of an infrared camera. Then a transient thermal finite element simulation is performed with the same boundary and inlet conditions of the experiment. Based on the output of the simulation, the internal heat transfer distribution is updated until convergence between simulation output external temperature and the experimental temperature is achieved. In order to start the iterative procedure, a first attempt estimation of the internal heat transfer distribution is obtained with a lumped thermal capacitance model approach. Different experiments were performed with different mass flow rates and the results are compared with available literature data. The obtained results allow to observe detailed heat transfer phenomena, strongly bound to the relevant features of the actual real cooling system.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.