Issue |
E3S Web Conf.
Volume 198, 2020
2020 10th Chinese Geosynthetics Conference & International Symposium on Civil Engineering and Geosynthetics (ISCEG 2020)
|
|
---|---|---|
Article Number | 01041 | |
Number of page(s) | 6 | |
Section | Geosynthetics Applied Design Theory and Method | |
DOI | https://doi.org/10.1051/e3sconf/202019801041 | |
Published online | 26 October 2020 |
Contrastive analysis of dynamic response of tailings dam with and without geofabriform by shaking table model test
1 College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China
2 Institute of Disaster Prevention, Hebei, 065201, China
3 School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
* Qiaoyan Li: liqiaoyan@cidp.edu.cn
Construction using geofabriform is a new promising technology to build fine grain tailings dam. Large-scale shaking table tests are conducted in this study to investigate the dynamic performances in terms of horizontal acceleration and displacement of the tailings dam with and without geofabriform subject to horizontal earthquakes. Test results indicate that the seismic performance of the tailings dam with geofabriform is significantly better than that of tailings dam without geofabriform. The two types of tailings dams have different failure modes under the action of earthquake. The acceleration amplification factor(Am), vertical displacement and horizontal displacement of the tailings dam with geofabriform under the same seismic acceleration input are smaller than that of the tailings dam without geofabriform, the maximum attenuation amplitude of the Am at the dam slope reaches to 81%. The horizontal displacements of the two types of dams are nonlinearly distributed in the height direction and the geotextile bags of the tailings dam have an upward displacement and are tilted upward. According to the failure mode of the tailings dam with geotextile bags, it is recommended to strengthen the drainage measures and set up anti-slide piles at the bottom of the geotextile bags body to strengthen the tailings dam.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.