Issue |
E3S Web Conf.
Volume 283, 2021
2021 3rd International Conference on Civil, Architecture and Urban Engineering (ICCAUE 2021)
|
|
---|---|---|
Article Number | 02044 | |
Number of page(s) | 9 | |
Section | Urban Planning and Protection of Natural Environment Facilities | |
DOI | https://doi.org/10.1051/e3sconf/202128302044 | |
Published online | 07 July 2021 |
Overturning stability of supported geomembrane tube for flood control
1 State Key Laboratory of Hydraulic Engineering Simulation and Safety in Tianjin University, Tianjin 300072, China
2 School of Civil Engineering, Tianjin University, Tianjin 300072, China
* Corresponding author: guow@tju.edu.cn
As a kind of rapid filling hydraulic structure, geomembrane tube can effectively act as flood barriers and cofferdams for flood risk management. L-shaped block is used to support geomembrane tube to prevent it from rolling. The contact force between the L-shaped block and the geomembrane tube is analyzed by using particle flow code (PFC2D) software, and the overturning stability of the L-shaped block is calculated. The relationship between the key factors and the overturning stability was established. It is found that the central angle of the L-shaped block has little influence on the overturning stability. The overturning stability decreases with the increase of the initial pumping pressure. Keeping Lw/Lb unchanged, increasing Lb will improve the overturning stability where Lw and Lb are the width and the height of the Lshaped block. Under the ultimate water level, when 1.23 Lbcr < Lw≤1.55 Lbcr, the L-shaped block is in the state of overturning stability where Lbcr is the critical height of the L-shaped block. The initial pumping pressure is less than 0.152γL, the L-shaped block is in the state of overturning stability with Lw/Lbcr =1.0 where L is the cross-sectional perimeter of the geomembrane tube and γ is the unit weight of the filling liquid, on the contrary, Lw/Lbcr must be greater than 1 to ensure its overturning stability.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.