Issue |
E3S Web Conf.
Volume 200, 2020
The 1st Geosciences and Environmental Sciences Symposium (ICST 2020)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 5 | |
Section | Environmental Management | |
DOI | https://doi.org/10.1051/e3sconf/202020002006 | |
Published online | 23 October 2020 |
Effects of heavy rainfall on the slope stability – A case study on Imogiri Cemetery: The graveyard complex of Mataram Royal Kings
Department of Civil and Environtmental Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia
* Corresponding author: shofwatul.fadilah@mail.ugm.ac.id
Rainfall is the most common cause of landslides in Indonesia. On March 17, 2019, a landslide occurred in the Imogiri Cemetery, Mataram Royal Kings Graveyard Complex. It was expected to have been triggered by heavy rainfall of 148 mm d–1 intensity. This research aims to determine the effect of rainfall on the slope stability on the landslide at the Imogiri Cemetery. The study was carried out by slope stability modelling using Geostudio software. Rainfall information and soil characteristics data obtained from testing soil samples in the Soil Mechanics Laboratory, Civil and Environmental Engineering, Universitas Gadjah Mada, were used as input on the software. The output of the analysis is the factor of safety (FS) value, defined as the ratio of the shear strength to the shear stress. Without the rains, the FS value is about 2.44, which means the slope stability is stable. After heavy rainfall, the FS value decreased to 1.209 at the end of the simulation, which indicates happen the slope instability. Based on the simulation, the FS value depends on the volume of water content and hydraulic conductivity of the soil. Result of this study shows that heavy rainfall can trigger slope instability in the Imogiri Cemetery.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.