Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 8 | |
Section | Keynote Papers | |
DOI | https://doi.org/10.1051/e3sconf/202020501002 | |
Published online | 18 November 2020 |
The EGS Collab Project: An intermediate-scale field test to address enhanced geothermal system challenges
1 Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
2 Sandia National Laboratories, Lawrence Livermore National Laboratory, Pacific Northwest National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, National Energy Technology Laboratory, Sanford Underground Research Facility, Colorado School of Mines, University of Oklahoma, Penn State University, Rice University, South Dakota School of Mines and Technology, Stanford University, University of Wisconsin, TDoe Geo, ResFrac, Mattson Hydrogeology
* Corresponding author: tjkneafsey@lbl.gov
† J. Ajo-Franklin, T. Baumgartner, K. Beckers, D. Blankenship, A. Bonneville, L. Boyd, S. Brown, J.A. Burghardt, C. Chai, Y. Chen, B. Chi, K. Condon, P.J. Cook, D. Crandall, P.F. Dobson, T. Doe, C.A. Doughty, D. Elsworth, J. Feldman, Z. Feng, A. Foris, L.P. Frash, Z. Frone, P. Fu, K. Gao, A. Ghassemi, Y. Guglielmi, B. Haimson, A. Hawkins, J. Heise, C. Hopp, M. Horn, R.N. Horne, J. Horner, M. Hu, H. Huang, L. Huang, K.J. Im, M. Ingraham, E. Jafarov, R.S. Jayne, S.E. Johnson, T.C. Johnson, B. Johnston, K. Kim, D.K. King, T. Kneafsey, H. Knox, J. Knox, D. Kumar, M. Lee, K. Li, Z. Li, M. Maceira, P. Mackey, N. Makedonska, E. Mattson, M.W. McClure, J. McLennan, C. Medler, R.J. Mellors, E. Metcalfe, J. Moore, C.E. Morency, J.P. Morris, T. Myers, S. Nakagawa, G. Neupane, G. Newman, A. Nieto, C.M. Oldenburg, T. Paronish, R. Pawar, P. Petrov, B. Pietzyk, R. Podgorney, Y. Polsky, J. Pope, S. Porse, J.C. Primo, C. Reimers, B.Q. Roberts, M. Robertson, W. Roggenthen, J. Rutqvist, D. Rynders, M. Schoenball, P. Schwering, V. Sesetty, C.S. Sherman, A. Singh, M.M. Smith, H. Sone, E.L. Sonnenthal, F.A. Soom, P. Sprinkle, C.E. Strickland, J. Su, D. Templeton, J.N. Thomle, V.R. Tribaldos, C. Ulrich, N. Uzunlar, A. Vachaparampil, C.A. Valladao, W. Vandermeer, G. Vandine, D. Vardiman, V.R. Vermeul, J.L. Wagoner, H.F. Wang, J. Weers, N. Welch, J. White, M.D. White, P. Winterfeld, T. Wood, S. Workman, H. Wu, Y.S. Wu, E.C. Yildirim, Y. Zhang, Y.Q. Zhang, Q. Zhou, M.D. Zoback
Three components are typically needed to extract geothermal energy from the subsurface: 1. hot rock, 2. a heat transfer fluid, and 3. flow pathways contacting the fluid and the rock. These naturally occur in many locations resulting in hydrothermal systems, however there are enormous regions containing hot rock that do not naturally have adequate fluid, and/or appropriate fluid permeability to allow hot fluid extraction. Some type of engineering or enhancement of these systems would be required to extract the energy. These enormous regions provide the possibility of long-term extraction of significant quantities of energy. Enhanced (or engineered) Geothermal Systems (EGS) are engineered reservoirs created to extract economical amounts of heat from low permeability and/or porosity geothermal resources. There are technological challenges that must be addressed in order to extract the heat. These include proper stimulation, effective monitoring, reservoir control, and reservoir sustainability. The US DOE Geothermal Technologies Office and geothermal agencies from other countries have supported field tests over a range of scales and conditions. A current US field project, the EGS Collab Project, is working nearly a mile deep in crystalline rock at the Sanford Underground Research Facility (SURF) to study rock stimulation under EGS stress conditions. We are creating intermediate-scale (tens of meters) test beds via hydraulic stimulation and are circulating chilled water to model the injection of cooler water into a hot rock which would occur in an EGS, gathering high resolution data to constrain and validate thermal-hydrological-mechanical-chemical (THMC) modeling approaches. These validated approaches would then be used in the DOE’s flagship EGS field laboratory, Frontier Observatory for Research in Geothermal Energy (FORGE) underway in Milford, Utah and in commercial EGS. In the EGS Collab project, numerous stimulations have been performed, characterized, and simulated and long-term flow tests have been completed.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.