Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 06006 | |
Number of page(s) | 6 | |
Section | Minisymposium: Advances in Energy Geostructures Research (organized by Fleur Loveridge and Guillermo Narsilio) | |
DOI | https://doi.org/10.1051/e3sconf/202020506006 | |
Published online | 18 November 2020 |
Investigations into thermal resistance of tunnel lining heat exchangers
School of Civil Engineering, University of Leeds, LS2 9JT, Leeds, UK
* Corresponding author: I.Shafagh@leeds.ac.uk
Geothermal energy is a promising and sustainable source that can reduce current dependence on conventional fuels for thermal energy production. To exploit this source of energy thermo-active geostructures such as tunnel lining heat exchangers are being investigated theoretically as well as experimentally. These geostructures are composed of concrete panels embedded with reinforcement cages fitted with absorber pipes. Several engineering projects in China, Finland and Italy have deployed such heat exchangers in tunnels. To achieve efficient energy production, characterisation of these systems require realistic models of the substructure heat exchanger. Therefore investigations into thermal resistance of the heat exchanger is vital. The present study is concerned with quantifying the thermal resistance of tunnel lining heat exchangers where the thermal boundary surfaces are applied at surfaces representing the adjacent ground and the exposed concrete, in addition to the pipe surface. Steady state temperature distribution in a two dimensional cross section of a tunnel lining heat exchanger is investigated using the boundary collocation least squares method. Design parameters including pipe and tunnel lining specifications are used as model inputs.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.